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 This thesis establishes the following three claims: 

1).  Experience with mechanical curve drawing devices played a role of fundamental 

historic and conceptual importance of in the development of analytic geometry, 

algebraic symbolism, calculus, and the notion of functions. 

2).  Two secondary students of mathematics benefited from their experiences with 

physical curve drawing devices, and that both the geometric and algebraic analysis of 

such devices raised, for them, crucial epistemic issues, the consideration of which led 

them to engage in a more balanced dialogue between the physical world and symbolic 

mathematical language. 

3).  A mathematical discussion of the tangents, areas, and arclengths associated with 

many curves need not be deferred until calculus, and that, quite the contrary, an 

understanding of the semiotic importance of calculus comes from seeing it as a 

language constructed from physical experiences. Such an understanding depends upon 

being able to correlate symbolic manipulations with independently verifiable geometric 

and physical experience.  Such experience can be readily gained from the use of 

mechanical curve drawing devices, and from simulations of such devices using 

available dynamic geometry computer applications. 
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 The first and third claims are established through a detailed analysis of the 

genetic epistemology of analytic geometry and calculus.  This analysis proceeds from 

original historical documents mostly from seventeenth century European sources.  

Based upon historical curve drawing techniques, both physical replicas of devices and 

computer simulations are used to explore the properties of curves. 

 The second claim is established through a series of clinical interviews with two 

high school students.  The students worked with replicas of three different physical 

curve drawing devices.  Their conceptions, inventions, beliefs, and modes of expression 

are analyzed from videotapes made during these interviews.  
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Chapter One: Introduction 

1.1  General Introduction 

 One of the fundamental goals of secondary and undergraduate mathematics 

education is for students to develop an understanding of the concept of a function.  If 

one discusses this idea with teachers and students, it is not so clear what this goal 

entails.  Many textbooks contain in their opening sections a definition of the word 

"function" which is given in the language of sets (i.e. a special type of relation where 

every member of the domain is paired or associated with exactly one member of the 

range).  This general definition usually disappears quickly from subsequent 

mathematical activities, suggesting that it is not useful within the context in which 

students usually find themselves.  Perhaps it is not the appropriate conceptual tool with 

which students work in analytic geometry and calculus.  When students are asked what 

a "function" is, they often reply that it is some kind of equation, involving x and y, 

which can be graphed.  This answer better reflects their experience in mathematics 

classes where the emphasis is on equations which express real valued functions of one 

real variable.  This is reflected in some textbooks when they discuss functions as 

numerical machines with inputs and outputs.  But is a function the equation? or the 

graph? or an algorithm? or something else?   

 Students spend a lot of time learning to see the connections between an equation 

and its graph.  From the beginning of analytic geometry in high school through several 

courses in college calculus, this remains one of the prevalent themes in mathematical 

education.  Learning to move flexibly between equations and their graphs is seen as one 

of the most fruitful abilities that mathematical education can offer.  Students are 

encouraged by teachers to perceive the existence of a dialogue between the algebraic 

structure of an equation and the shape of its graph.  Many recent educational reform 
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efforts (e.g. N.C.T.M. Standards, 1991) have suggested that a greater effort be placed on 

qualitative visualization skills that emphasize what can be deduced from or about the 

visual shape of a graph. 

 The presentation of this dialogue in our current curriculum is often unbalanced.  

Consider the phrase: "an equation and its graph."  Implied here is that graphs are 

created by equations, and indeed this is usual experience of students in mathematics.  

For example, many current reform efforts stress the use of graphing calculators.  This 

tool creates an environment where curves can exist only secondarily, as representations 

of algebraic statements or numerical data.  The existence of algebraic equations is 

privileged over that of geometrically produced curves.  The substitution of the word 

"graph" for the word "curve"  implies that a coordinate system must exist before a curve 

can exist, which gives primacy to algebraic expression.  In mathematics classrooms 

curves are usually created from algebraic equations or numerical data, and only rarely 

by physical or geometric actions (lines and circles being the only common exceptions).   

 There are many recent educational materials that attempt to broaden the 

dialogue between curves and numerical relationships.  Many have focused on graphs of 

data that come from physical experiences (e.g. Confrey, 1994c; Hilbert, et al, 1994; 

Monk, 1992).  This stronger use of contextual problems ties mathematics more strongly 

to important scientific phenomena.  These recent reform efforts have also looked at the 

role of qualitative graphing concepts in the scientific thinking of students.  These reform 

efforts are useful and important, but curves are still being created in reference to a pre-

established coordinate grid.       

 There is a ordered progression of activities in both our current curriculum, as 

well as many of the reforms suggested by the use of experimental data and qualitative 



    

David Dennis Curve Drawing Devices http://www.quadrivium.info  
 

3 

graphing.1   In the usual curriculum that is, first the equation, second the coordinate 

grid, and last the plotting of points as a graph.  In the reform curriculum, one often 

starts, instead, with a table of numerical data and then proceeds to a coordinate grid 

and then to a graph.  Things come into existence in that order before any dialogue can 

begin.  I want to claim that this important process could become more powerful in our 

classrooms if it were allowed to reverse itself and flow fully in both directions, thereby 

creating a more complete balance in the dialogue between curves and equations.  

Analytic geometry could be presented as a feedback loop between the tactile, geometric 

world of curves and the semiotic world of algebra and numerical data.  Such a feedback 

loop could avoid hierarchy altogether (von Glasersfeld, 1978; 1990).  The concept of a 

function could be seen as a cognitive process that moves flexibly between multiple 

representations none of which is given special status or definitional preeminence.  

Confrey (1992; Confrey & Smith, 1991) calls this an "epistemology of multiple 

representations." 2    

 The question that then emerges is how can we construct the missing half of this 

feedback loop?  What tools, activities and concepts would be required in order to create 

a mathematical environment where curves have a primary existence, and coordinates 

and equations come into existence as secondary facilitators.  To investigate this I have 

looked carefully at the historical genesis of analytic geometry.  For example, the most 

famous original source on the subject is René Descartes' Geometry  (1952), which was 

first published in 1637.   Never once did Descartes write down an equation and plot its 

graph.  His book is devoted to generating curves with devices (usually mechanical 

linkages), and then imposing a relevant coordinate system, and lastly finding an 

                                                 
1  Some educational researchers have used explorations of qualitative graphing in ways that 
begin to allow for the discussion of curves that have been created prior to numerical or algebraic 
symbolism (e.g. Rubin & Nemirovsky, 1991).  
2  It should be noted that Confrey emphasizes the role of tables as well as graphs and equations in 
this epistemology. 



    

David Dennis Curve Drawing Devices http://www.quadrivium.info  
 

4 

equation.  Algebraic equations are used to create a taxonomy of curves, hence the name 

"analytic geometry."  For Descartes, algebraic equations were codes for geometric 

constructions and actions which produce curves.  Throughout his book curves have a 

primary existence prior to the imposition of any coordinate system.  An arbitrary 

algebraic equation, which is not connected to a curve drawing device, has no epistemic 

significance for Descartes (Lenoir, 1979).   

 The main goal of this thesis is to indicate specific ways in which curve drawing 

devices and activities could be used to create a fruitful educational environment where 

profound connections between geometry and algebra could be explored by students 

without isolating or privileging either.  My first arguments will be based on a combined 

investigation of conceptual historical genesis and a "rational reconstruction" (Lakatos, 

1976) of historic ideas facilitated by dynamic geometry computer applications.  These 

will be followed by an analysis of students working first with curve drawing tools and 

arriving at algebraic equations only secondarily.   

 Descartes' development of analytic geometry was as unbalanced as our modern 

curriculum, but in the opposite direction.  During most of the seventeenth century, 

ancient traditions persisted that viewed geometry as the dominant form of 

mathematical thought.  Algebra was considered secondary at best, and by some entirely 

untrustworthy (Cajori, 1929).  In our own times this dominance relation has been 

reversed, especially in American public schools where relatively little time is spent on 

geometry, and what geometry is taught is mostly formal and isolated from other topics.   

 Curve drawing devices as a bridge between geometry and algebra have almost 

disappeared from our mathematical classrooms despite, or perhaps because of, their 

compelling physicality.  The immense value placed by Western Culture on 

disembodied, decontextualized, abstraction has led to a general trend over this entire 

century to separate mathematics even from its roots in engineering and science, and 

certainly from its social and historical genesis.  The notion of a "pure mathematics" 
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divorced from its physical and empirical origins, and separate from "applied 

mathematics" indicates a disturbing lack of communication.  This inability to 

communicate has troubling repercussions in education.  It represents an inability to 

discuss mathematics as a cultural tool with a social historical genesis rooted in 

problems and activities.   

 This trend has been repeatedly challenged by those outside of professional 

mathematics such as educators and scientists (e.g. Confrey, 1993a).  It has also been 

occaisionaly challenged by working mathematicians; for example, by Richard Courant 

(1888 - 1972), who made extensive use of physical phenomena, like soap bubbles, to 

teach advanced subjects like the calculus of variations.  Courant, writing about the 

famous mathematician, Carl F. Gauss (1777-1855), said: 
 

He (Gauss) was never aware of any contrast, not even of a slight line of 
demarcation, between pure theory and applications.  His mind wandered 
from practical applications, undaunted by required compromise, to 
purest theoretical abstraction and back, inspiring and inspired at both 
ends.  In light of Gauss' example, the chasm which was to open in a later 
period between pure and applied mathematics appears as a symbol of 
limited human capacity.  For us today, as we suffocate in specialization, 
the phenomenon of Gauss serves as an exhortation.  The representatives 
of both camps should not be proud of their limitations, but should do 
everything to understand each other and to bridge the chasm.  In my 
judgment, it is critical for the future of our science that mathematicians 
adopt this course, both in research and in education.  (Courant, 1984, p 
132).  
 

  Another leading figure in modern mathematics, Jon von Neumann (1903 -1957), 

was also troubled by this separation of pure mathematics from empirical and physical 

investigations.  Von Neumann argued that when the formal procedures of 

mathematical discourse have become far removed from their empirical origins that:  
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there is a grave danger that the subject will develop along the 
lines of least resistance, that the stream, so far from its source, will 
separate into a multitude of insignificant branches, and that the 
discipline will become a disorganized mass of details and 
complexities.  In other words, at a great distance from its 
empirical source, or after much "abstract" inbreeding, a 
mathematical subject is in danger of degeneration.....  Whenever 
this stage is reached, the only remedy seems to me to be the 
rejuvenating return to the source: the reinjection of more or less 
directly empirical ideas.  (1984, p.234). 
 

 The views of Courant and von Neumann and others like them have gone largely 

unheeded in most classrooms, especially when it comes to analytic geometry and 

calculus.  Certain iconic "word problems" are repeated in these courses, but seldom are 

physical activities profoundly linked to the development of formal language.  Often 

attempts at "applied problems" have become subject to formalization and "abstract 

inbreeding," and have often been stripped of any strong physical sense that would 

bring them to life (see section 2.9 for a specific example).    

 The most powerful and lasting mathematical achievement of seventeenth 

century Europe was to establish the possibility of representing many aspects of physical 

geometry with the symbolic language of algebra.  That this can be done with some 

degree of consistency is a fundamental mathematical belief upon which modern science 

is constructed.  The work of Leibniz and Newton at the end of the century was a 

compelling demonstration of the extent to which physical geometry and semiotic 

algebra are compatible.  That is to say, when one can construct two different ways of 

arriving at, say a certain ratio or area, then the two different approaches will agree.     

 Belief in this consistency did not come easily (Cajori, 1929), and yet is casually 

assumed in our mathematics classrooms without questions or demonstrations of either 
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a physical, symbolic, or intellectual type.  The mathematical language that was 

constructed in the seventeenth century (i.e. analytic geometry and calculus) remains, for 

most students, the dominant core of their secondary and undergraduate mathematical 

curriculum, and yet students are rarely put in an environment where they can either 

doubt or confirm the startling claim that geometry and algebra can express compatible 

things in different settings.   

 The first principle of Cartesian philosophy is that all well founded intellectual 

beliefs begin with profound doubt (Descartes, 1989).  In a larger philosophical setting, 

the goal of this thesis is to suggest how students could be given a chance to experience 

that doubt through the interaction of physical and linguistic activities, and then go on to 

transcend that doubt; moving on to an experience of conviction.  A variety of physical 

curve constructions, often taken directly from seventeenth century texts, will be 

analyzed.  The material will be discussed in its original cultural setting, and will also be 

looked at in light of modern computer technology with the dynamic animation capacity 

that is readily available in high schools (e.g. the software, Geometer's Sketchpad, Jackiw, 

1994).   

 I will not suggest that computer animations can take the place of physical 

experience.  They can, however, provide rapid variation and extrapolation of 

experiments conducted by students who have first had some experience with actual 

curve drawing devices.  Computer animations and simulations can provide 

intermediary environments which help to set up a dialogue between the physical 

experience of geometry and the symbolisms of algebra (Confrey, 1993a).  I will discuss 

specific examples of how these intermediary tools could facilitate the multidirectional 

flow of the cognitive feedback loop which I see as analytic geometry. 

 This main content of this work will be organized into two parts as follows.  

Chapter 2 will examine in detail a variety of geometric curve drawing devices and their 

crucial role in the creation of analytic geometry and calculus.  These devices will be 
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explored and extrapolated with the use of Geometer's Sketchpad.  There are many 

precisely drawn figures and curves in Chapter 2, but none were created by inputting an 

equation and plotting a graph.  All of the figures were created by geometric actions.  

Chapter 3 will look, via clinical interviews, at the techniques, attitudes, and beliefs of 

two high school students as they confront three very different physical devices, which 

all draw ellipses.  Thus I will examine the historical genesis of a broad set of 

mathematical ideas and then build, as an example, one specific environment where 

individual students can begin to experiment with different perspectives. 

 In summary the goals of this thesis are as follows: 

1).  To establish the fundamental historic and conceptual importance of curve drawing 

devices in the development of analytic geometry, algebraic symbolism, calculus and the 

notion of functions. 

2). To show how two secondary students of mathematics benefited from their 

experiences with physical curve drawing devices, and that both the geometric and 

algebraic analysis of these devices raised, for them, crucial epistemic issues, the 

consideration of which led them to engage in a more balanced dialogue between the 

physical world and symbolic languages. 

3).  To show that a discussion of the tangents, areas, and arclengths associated with 

many curves need not be deferred until calculus, and that, quite the contrary, an 

understanding of the semiotic importance of calculus depends upon being able to 

correlate its symbolisms with independently verifiable geometric experience.  Such 

experience can be readily gained from the use of physical curve drawing devices, and 

from simulations of such devices using available dynamic geometry computer 

applications. 
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1.2  Curves, Graphs, Equations, Functions, and Parameters 

 Section 1.1 opened with some questions concerning the definition of "function," 

and went on to raise certain issues about curves, graphs, and equations.  One might ask 

what definitions will be used in this work.  I want to say right from the start that no 

particular set of clear and precise logical definitions will be educationally advocated.  

Both the historical and the student investigations will indicate a variety of useful 

conceptions, but no fixed definitions will emerge as capable of encompassing all of 

these useful conceptions.  Mathematical flexibility will demand a certain ambiguity 

when facing both the intractability of the material world, and the intractibility of human 

cognition to perceive the material world (von Glasersfeld, 1984).   

 To be as clear as possible, the term "graph" will be used to denote a curve that 

has been created from numerical information by plotting points in a pre-established 

coordinate grid.  The more general term "curve" will be used to denote a path in the 

plane that can be traced by some sort of reproducible action.  Most of the examples of 

curves discussed here can be drawn with some sort of mechanical device, although 

other methods, such as paper folding, will also be mentioned.  I will not discuss 

random tracings, but I will discuss computer animations made from geometric inputs 

which simulate mechanical devices.  

 The general issue of how algebraic symbols will be viewed, both in historical and 

educational terms, will be discussed repeatedly in varying contexts.  One main 

intention will be to use mathematical history to create a broad and flexible notion of 

how language evolved in response to activities and experience.  The results of 

experimental activities were well known before symbols could be formulated capable of 

expressing those results.  It is this sense of linguistic response to known experiences 

that I want to see brought into mathematics education.  This is essential to a 

constructivist philosophy of education (see Section 1.3).  
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 The issue of the difference between equations and functions must be seen in light 

of this broader epistemic issue.  If physical activity is to play a larger role in the 

educational development of, say, analytic geometry then a certain ambiguity will be 

unavoidable.  A strict definition of "function" will never entirely serve the needs of 

flexibility within a cognitive feedback loop.  Historically, a broad concept of "function"  

evolved in response to many activities.  In the classroom, this evolution must be 

allowed to take place in such a way that a variety of concepts, rooted in activities, are 

allowed to fruitfully coexist.  It is the progressive elimination of both prior activities and 

prior concepts that curtails our curriculum and causes the "suffocation in specialization" 

that Courant warned against (1984).      

 For example, the geometric definition of "functions of a curve" given by Leibniz 

(see Section 2.3) is still a very useful tool for investigation, even while it tends to blur 

the difference between equations and functions.  It is an excellent example of a lost 

phase of history that can provide a powerful conceptual approach to curves.  It yields 

simple and elegant results in analytic geometry that are usually delayed until calculus, 

and it is particularly appropriate within the environment of dynamic geometry 

computer applications.     

 As one experiences different functional concepts, the use of specific "parameters" 

can help to untangle some of the ambiguities, but only after one has been immersed in 

the kind of curve drawing activities that gave rise to Leibniz's geometric definition in 

the first place.  As the historic material in Chapter 2 is presented, at first parameters, 

such as arc length or time, and parametric equations are avoided, but as the material 

from the seventeenth century unfolds certain parameters come to play important 

central roles.  Parameters demand to be considered if certain actions and activities are to 

be understood and analyzed (Sections 2.12, 2.13, and 2.14), but when one is just 

beginning to think about physical curve generating activities, they can sometimes be a 

needless burden.  Both of the students in Chapter 3 mention possible parametric 
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approaches to the devices they are investigating, although they eventually abandon 

them.  The original use of the term "function" by Leibniz (Sec. 2.3) was purely geometric 

and did not involve parameters, although his usage can not be formally reconciled with 

any modern definition of function without the use of parameters.  Thus, although 

several parts of both Chapters 2 and 3 suggest that parametric equations may be a very 

natural educational approach to functions in a geometric context, this will not be a 

major topic of investigation in this work  

 Many modern curricular reform agendas (e.g. N.C.T.M., 1991) enshrine the 

notion of "function" as central in the secondary curriculum, thus making functions a 

kind of umbrella concept under which to interpret large sections of mathematics.  One 

regrettable consequence of this approach is that the only curves that enter into the 

curriculum are graphs, i.e. curves are presented only as secondary representations of 

data or equations.  In both the historic material of Chapter 2, and the student interviews 

of Chapter 3, there emerges a notion of algebraic equations as secondary 

representations of curve drawing actions.  An algebraic description of a function is 

clearly seen as a linguistic response to a dynamic curve drawing action.  This complete 

feedback loop, with all of its attendant ambiguities, is what I will educationally 

advocate. 

 The central curricular role of the function concept will not be challenged here, 

provided that concept can serve dual, over and under, purposes.  That is to say that the 

function concept can serve both as a unifying general concept, as well a set of specific 

tools for the unpacking of dynamic activities.  In particular, it is important that 

functions can both represent and be represented by curves.  
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1.3  Educational Theory 

 My opening remarks have hinted at some of my theoretical and epistemological 

stances.  I now wish to make these stances specific.  I am attempting to apply the 

emerging theory of Jere Confrey as described in her recent paper "The role of 

technology in reconceptualizing functions and algebra," (1993a).  For many years 

Confrey's research has proceeded using a radical constructivist philosophy, based 

originally on the ideas of Piaget and von Glasersfeld.  Her work centered on careful 

listening to students and the design of software and contextual problems which were 

tailored to foster a variety of  perspectives and multiple representations.  In order to 

design problems and software which would allow students maximal flexibility of 

expression, she often investigated the history of mathematics in order to provide a 

broader framework with which to describe, examine, and legitimate student 

conceptions.  Her earlier work viewed mathematical development from a largely 

constructivist, Piagetian framework.  The construction of knowledge by the student was 

seen as a cyclic interaction between personal reflection, problematic situations, and the 

actions and tools available (Confrey, 1993b).  Others were seen as important sources of 

interactions via communications and the posing of questions. 

 More recently Confrey's work includes some of the developmental theories of 

Vygotsky.  These theories stress the importance of social interaction and cultural 

context  in the construction of knowledge.  Vygotsky worked within a Marxist tradition 

that emphasized the importance of tools in the transformation of labor.  He extended 

the notion of tools beyond the physical to include language, symbols, and any semiotic 

environment in order to arrive at one of his most fundamental principles, i.e. that tools 

mediate knowledge.  Vygotsky (1962) viewed thought and language as an Hegalian 

dialectic from which knowledge emerges.  Confrey's work (1993a) links the theories of 

Vygotsky with the more modern radical constructivist work by viewing mathematics as 
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formed from a dialectic between "grounded activity" and "systematic inquiry" (1993a, p. 

51).  Her dialectical structure is mediated by tools, both physical and semiotic.   

 Confrey (1993a) criticizes Vygotsky's writings for losing the dialectic between 

thought and language and ultimately privileging symbolic abstractions over what is 

learned through physical activity.  Piagetian research has shown the rich and varied 

ways in which children construct knowledge by adapting to physical as well as semiotic 

environments (Confrey, 1993b; von Glasersfeld, 1982).  Confrey's new dialectical 

structure gives equal roles to grounded activity and systematic inquiry.  She views 

mathematics as comprised of an equal balance between physical, empirical activities 

and symbolic, linguistic investigations. 

 This perspective has led her to challenge the portrayal of abstraction in both 

Vygotsky and Piaget, and to question their assumptions about the necessity of 

detachment from bodily activity (Confrey, 1994e).  She points out that these 

assumptions make it difficult to acknowledge the abstract understandings of expert 

carpenters, mechanics, engineers, and architects whose expertise lies in a unification of 

both mental and physical dexterity (Milroy, 1990).3 

 Like Vygotsky, Confrey wishes to focus on mathematics as kind of tool, 

however, she criticizes Vygotsky for having moved too completely to a focus on 

psychological tools as he viewed language or semiotic systems, and thus neglecting the 

interplay between physical and symbolic tools.  As a result the focus on advanced 

technologies in today's schools tends to be on what they display rather than on how 

they work.  The role of physical investigation and context in creating appropriate 

challenges and invitations for student thinking are lacking. 

                                                 
3  During the seventeenth century, for example, a "geometer" was someone whose primary job 
was the design of fortifications, siege engines, canals, water systems, etc.  In Descartes time this 
is what was taught in a University course on "Geometry."  
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 In their historical work, Confrey and her associates used epistemological 

arguments to examine and critique standard historical descriptions of mathematics.  In 

doing so, they sought out instances in which there were uses of multiple 

representations(e.g. Confrey & Smith, 1995; Dennis & Confrey, 1993; Smith, Dennis & 

Confry 1992).  They used the study of the genesis of ideas to critique the practices of 

mathematicians that contribute to the mystification of the subject.  Chapter 2 of this 

work will provide an extensive example of an historical investigation undertaken from 

this stance.   

 In their empirical work, Confrey and her associates have demonstrated how an 

unduly narrow definition of mathematics has led to the suppression of diversity in 

student methods.  They have argued that the dominance of symbolic algebra at the 

secondary level has contributed to the alienation and discouragement of many students 

towards pursuing mathematics.  In contrast, they have documented how may views 

suggested by students go unrecognized by teachers, but can lead to robust and 

epistemologically challenging mathematics.  Chapter 3 of this work will provide 

examples of such student thinking in relation to the curve drawing tools.     

 Part of the epistemology implied by this dialectical view has been called by 

Confrey an "epistemology of multiple representations" (Confrey & Smith, 1991).  This 

philosophy sees the construction of mathematical language as attaining its viability 

through the process of checking back and forth  between different representations in 

order to solve interesting problems.  For example, one might gather data from a 

geometrical situation and then enter numbers in a table.  After manipulating and 

expanding table entries according to what makes sense within that representation, one 

then checks back to see whether these results have consistent geometrical implications.  

The focus is on recognizing the integrity of each representation's ability to contribute 

insight into the problem.  It means acknowledging the differences as well as the 
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commonalties in those contributions.   (For an example of how students engage in this 

process see Confrey, 1993b; for an historical example see Dennis & Confrey, 1993.) 

 The curriculum and software developed by Confrey and her associates has 

centered on three representational forms; those being tables, equations, and graphs 

(Confrey, 1994b; Confrey & Smith, 1991).  This work accomplished much towards 

providing students with a more flexible and diverse approach to functions and problem 

solving.  Important in this work was the emphasis upon equal and independent status 

for each representation.4  This thesis will suggest the use of curves as another 

representation of functions as well as the use of functions themselves as representations 

of curves.  I have already indicated in my opening comments the difference between 

graphs and curves, and I will discuss, in Chapter 2, an abundance of examples.  I will 

describe a variety of possible tools and activities which could allow students to work 

within a world of curves and to correlate those experiences with other representational 

forms.  These tools will include both physical devices and computer simulations. 

 The direct mechanical generation of curves provides a form of grounded activity 

which can lead in a variety of profound directions.  Using only hinged rods (linkages) 

one can draw any algebraic curve5 (Artobelevskii, 1964).  Linkages can also be used to 

generate arbitrarily dense sets of points on transcendental curves (e.g. log curves, see 

Section 2.12).  If rolling wheels are included one can draw cycloids, sine curves and a 

host of other transcendental curves (see section 2.13).  The tools involved are 

immediately physical and comprehensible in a way that many tools in science often are 

not.  Even though the resulting action can be  surprising, all the parts of a mechanical 

                                                 
4  For example, her software Function Probe allows for the manipulation of  graphs in terms of 
stretch, reflection, and translation, directly through mouse actions without requiring an algebraic 
manipulation.  
5  Algebraic curves are those whose coordinates can be represented by an equation of  finite 
algebraic degree, as opposed to curves like cycloids and exponentials which require an infinite 
series for a representation of their coordinates.   
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curve drawing device  are open to inspection.  Unlike the mysterious electronics of 

computers, the actions that I will discuss are physically apparent and demonstrable to 

students. 

 From a direct analysis of the action used to draw a curve one can often determine 

an equation for the curve, after the fact, using geometric similarity.  Confrey's work 

(1994a; 1988) with elementary school students indicates the need for a much stronger 

sense of ratio that is more tied to geometric similarity.  In her splitting conjecture, she 

argued for the independence of the roots of splitting (multiplicative structures), and 

counting (additive structures), placing the roots of splitting in sharing, geometric 

similarity, and the iteration of these processes.  These provide the precursors to ratio 

and proportion.  The activities that I will describe will suggest some ways that these 

reforms could be extended to the secondary curriculum, and connected to a diverse, 

multi-representational view of functions.  In fact, the idea for this thesis germinated 

when I was working on a research assignment, for Jere Confrey, to look for examples in 

mathematical history which displayed greater use of geometric similarity.  This led me 

to an investigation of  Descartes' hyperbolic device (see Section 2.7), which in turn led to 

me to a more detailed study of curve drawing devices. 

 Even before algebraic equations are found, one can often determine tangent 

lines, areas between curves, and arclengths of curves, all from an analysis of the actions 

which produced the curves.6   Historically as the languages and notations of algebra 

and calculus were developed, they needed to be tested for viability against 

independently established examples.  Curve drawing devices often provided the crucial 

tests for the viability of these new linguistic tools; they provided the critical 

experiments.  It is educationally important to present this sense of mathematical 

                                                 
6  If no coordinate system or unit of measure have been imposed, one can still discuss the ratios 
of areas and arclengths in a purely geometric setting.  This will be seen in many of the historical 
examples presented in Chapter 2 (e.g. Section 2.13).  
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language and notation as a culturally viable tool that can be tested empirically against 

grounded activity.  Tests for viability are more profound when they occur across as 

diverse a set of representations as possible.     

 The examples that I shall present concern the situation where geometry moves, 

and curves are created.  I shall present material which will broaden the diversity of 

possible representations in the area of analytic geometry and calculus.  This conceptual 

material is historically important, but even without a knowledge of history it opens a 

series of alternative pathways from which to approach analytic geometry and calculus.  

I believe that it could be helpful in promoting lively conjectural discussions in 

secondary classrooms, making it easier for teachers to listen to students in a 

constructivist way (Confrey, 1994a).  An advantage of the curve drawing devices is that 

they present familiar material in a different way, and they easily lead to challenging 

open questions, especially when the generation of curves is extrapolated using 

computer animations (e.g. Section 2.11). 

 The students, whose interviews I will discuss in Chapter 3, were not told 

anything about the history of the devices with which they worked, until after they had 

finished with their own activities and analysis.  The apparatus itself (e.g. Figure 2.9a) 

placed them in an alternative representation (dynamic geometry), and they had to find 

their own ways of connecting this with a more familiar representation (e.g. algebra).  

Both of these students experienced a strong sense of satisfaction when they achieved 

what, to them, was a satisfactory cross-representational consistency, although they 

differed in their relative faiths in each separate representation; one relied more on 

algebra, the other more on geometry. 

 The student interviews presented in Chapter 3, display both the diversity of 

student conceptions, and the power of tools which allow for multiple representations.  

Together with the historical analysis of Chapter 2, these interviews clearly illustrate the 

main tenets of Confrey's educational theory.  By combining the historical analysis with 
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the possibilities created by newly developed computer applications, these approaches 

and ideas suggest profound directions for broad educational reform. 
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1.4  A Response to the Views of Some Professional Mathematicians 

 Confrey states, "The contributions of Piaget and the constructivist program have 

documented time and time again that the formal presentation of mathematics by 

mathematicians forms an inadequate basis for engaging students in the process of 

learning mathematics" (1993b, p.307).  Formal notational hierarchies as the main 

educational format in mathematics has lead to a "deafening silence" that pervades our 

secondary classrooms (Confrey, 1993b, p.305).  The historical material that I will present 

is intended for educational use within an epistemology of multiple representations, yet 

how will mathematicians respond to such a philosophy in the classroom?   

 Many mathematicians have experienced mostly formal mathematics, and may 

know nothing about history, but I want to briefly recount a discussion that I had with 

Anil Nerode whose knowledge of both mathematics and history is vast.  He objected to 

the use in the classroom of an "epistemology of multiple representations" saying that it 

was an anachronism which would "throw students back into the days before the 

Weierstrass revolution."  He said that of course that was how Pascal, Wallis,  Newton, 

Leibniz, and Euler proceeded, "all those guys were in the same boat."  Nerode meant 

that an epistemology of multiple representations was the only way that these early 

mathematicians had to justify their new techniques, language, and notations, whereas 

the nineteenth century found new and more sophisticated language which added a 

whole new level of certainty and agreement to analytic geometry and calculus.  This 

movement culminated in the work of Karl Weierstrass (1815 - 1897) and led directly to 

the formalisms of our time (e.g. the format of a "modern analysis" course).  

 I feel compelled to answer the objections of Nerode and others who have voiced 

similar opinions to me.  I am not presenting a new series of proofs.  Although much of 

the historical material in Chapter 2 could be presented as proofs that would satisfy most 

mathematicians, my goal is to display a heuristic process of experimentation which is 
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necessary for the validation of any formal linguistic development.  In Sections 2.12 and 

2.13, I have presented some material that would be very difficult to formalize.  Those 

sections especially may draw from some the reaction that "oh god, that's exactly the 

kind of thinking that we've got to keep out of calculus, that stuff leads to 

contradictions."  That is to say that some mathematicians may strongly object to 

exposing students to the kind of empirical and heuristic arguments that were used in 

the seventeenth and eighteenth centuries, because such methods can lead to paradoxes 

when a larger repertoire of functional definitions is later introduced (e.g. definition via 

infinite series).   I remain, however, firmly committed to an educational epistemology in 

mathematics that is both empirical, and finds its viability in checks between multiple 

representations.  I shall justify this commitment in several ways. 

 Piaget and Vygotsky both espouse forms of  "genetic epistemology" which 

compels educators to examine the historical, social, and cultural genesis of all 

knowledge (Confrey, 1993a).  The mathematics that dominates our secondary 

curriculum stems almost entirely from the empirical science of the seventeenth century.  

This is no cultural accident since capitalism and the modern state both originated in the 

same period.  A social history of the genesis of science and mathematics would explain 

a lot about our educational values, but that is beyond the scope of this work.  I wish to 

state clearly, however, that I am not making an argument for empirical curve drawing 

from a belief that students must relive history in their educational development (i.e. 

that phylogeny recapitulates ontogeny).  Certainly it is possible to learn a great deal of 

mathematics with no knowledge whatsoever of curve drawing devices.  I was trained 

that way, and so were most of the current generation of mathematicians.  I was able to 

learn the mathematics of the Weierstrass revolution without experiencing any of the 

actions or problems that occupied Descartes or Pascal, but many others were not so 

fortunate and I always had a suspicion that I was missing something. 
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 Many secondary teachers of mathematics have only the vaguest notion of what 

the Weierstrass revolution is about.  They often remember some painful course called 

"Analysis" or "Advanced Calculus" that they were required to take in college and have 

never used since then.  One lasting result of these required courses seems to be that 

nearly all questions concerning tangents, curved areas, and arclengths (except for the 

circle) are avoided completely in the precalculus curriculum.  The language of these 

college analysis courses has made such questions seem far more difficult than they are.  

These topics can then strike fear in the hearts of teachers and any questions from 

students concerning, say tangents, are often answered with "You'll find out about that 

when you get to calculus."   

 These teachers can not comprehend the language of Weierstrass nor the need for 

it, and yet they are also cut off from the earlier empirical epistemology which could 

provide them with satisfying answers and activities, which they could share and 

discuss with their students.  Secondary teachers need better education, but that is not 

usually to be had from taking more traditional courses in a college mathematics 

department.  The next chapter will provide many compelling examples of what I feel is 

needed.  I will show examples of curves, tangents, areas, and arclengths, that could be 

discussed with secondary students at a very early stage.  If such activities were 

developed, these students could then later view many of the early results of their 

calculus classes as linguistic reformulations of things that they had already experienced.  

The language of calculus would then, from the very beginning, be about something 

with which they already had some experience. 

 From a constructivist point of view, one must ask what problematic situation 

created the need for the Weierstrass revolution in language.  I will not discuss this in 

detail, but, from almost any historical view, the problems and contradictions that 

directed the mathematical development of the late nineteenth century occur within a 

context that is far removed from that of a secondary classroom, or even a college 
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calculus course.  Euler, working in the eighteenth century within an epistemology of 

multiple representations, achieved very sophisticated results in analysis and differential 

equations that are the basis of much of the advanced engineering mathematics of today 

(Euler, 1988; Boyer, 1968).  His empirical approach to convergence did occasionally lead 

to paradoxes, but Euler's attitude (1988) reminds me of an old joke.  The patient says 

"doctor it hurts when I do this."  The doctor responds, "don't do that."  That is to say, he 

continued to experiment empirically until he arrived at a method which was 

meaningful within the contextual circle in which he worked.       

 Chapter 2 will indicate ways that many curves and their tangents and areas can 

be profoundly discussed by experiencing the actions that produce the curves and 

analyzing them using only the most basic language of geometry.  Notions of tangency, 

area and convergence can be treated without formal definitions (see Section 2.2.).  This 

material could be expanded in ways that could be useful in both teacher training 

courses and in secondary classrooms.  With the aid of simple mechanical devices and 

computer software like Geometer's Sketchpad, these important historical topics could 

become standard curricular reforms that speak to readily available physical  

experiences, and lead to profound mathematics within an epistemology of multiple 

representations. 

 I do not mean to disparage the linguistic achievements of the Weierstrass 

revolution.  This movement in mathematics certainly did create a subtlety of language 

in analysis that put an end to a variety of disturbing paradoxes and controversies 

(Boyer, 1968), but the examples that gave rise to these controversies can only be 

constructed using methods (usually infinite series) that are beyond the scope of most 

secondary classrooms, and certainly do not arise in mechanical curve drawing activity.  

The Weierstrass revolution is a linguistic response to a set of problematic activities that 

emerge in a setting far removed from the set of activities that gave rise to analytic 

geometry and basic calculus.  As Lakatos (1976) might say, the monsters which lurked 
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on the edges of calculus in the nineteenth century were not at all of the same breed as 

those which prompted the linguistic formulations of Descartes or Leibniz.  

Educationally, linguistic formulations must be made in response to the problematic 

activities experienced by the students.  Symbolic language must earn its validity 

directly from student experiences.        

 The Weierstrass movement, towards a more formal mathematics, can still never 

achieve the absolute certainty desired by its originators.  The Gödel theorem has shown 

the twentieth century that that is impossible once infinity is admitted into mathematics, 

as it must be if anything like classical geometry is to continue.  Those who desire a 

formal hierarchical mathematics with certainty must confine themselves to finite 

mathematics as has been suggested by von Neumann and others in more recent times. 

 I do not think our society ought to restrict itself to finite mathematics, despite the 

allure of certainty, and the achievements of modern computer languages and logic.  

Geometry, with all of its infinite notions and their attendant uncertainties, is a cultural 

icon which most mathematicians want to retain.  In this sense, the Weierstrass 

revolution can be viewed as another linguistic representation in an expanded 

epistemology of multiple representations.  No matter what its level of logical subtlety, 

can anyone believe that this form of mathematics would ever have gained acceptance if 

it was not consistent with earlier forms of empirically established geometry?  I hope 

that the reader will recall this question when he/she reads Christopher Wren's 

determination of the arc length of a cycloid (section 2.13).  Arguments are one thing, but 

does the answer come out within reasonable bounds of empirical measurement?  If it 

does not, then history shows us that it is the language that must be readjusted. 

 Another parallel comes to mind.  Consider the formalization of logic by Frege, 

Russell, and others in the early part of this century.  People did not need Russell's 

axioms to know how to make a logical argument.  This had been known for centuries.  

Russell's formalizations did more to show what logic could not do, than what it could.  
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All of this is only interesting to someone who has had some direct experience with the 

making of logical arguments.  The informal empirical methods of curve drawing and 

tangent finding will help students to see what they can accomplish using simple tools 

together with the linguistic methods that are appropriate to those experiences.  The 

positive results of such investigations should precede the restrictive logical analysis of 

more formal methods.  
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1.5 The Role of History in Mathematics Education 

 Before embarking on my own interpretive view of some mathematical history, I 

wish to comment generally on the possible uses that history could have for 

mathematics education.  What kind of investigations are desirable? Where and how 

should they be presented and discussed?  What sort of curriculum reforms can history 

inspire?  What kind of history, if any, should be presented directly to secondary 

students? or to teacher candidates?  What part should history play in educational 

philosophy and epistemology?  Recently various articles and curriculum materials have 

appeared that take very different views, and, before explaining my own stance, I would 

like to comment on a few of these. 

 First of all there is anecdotal, largely biographical history that some textbooks 

and teachers like to include to "spark the students interest" or "give mathematics a 

human face."  The calculus textbook by Howard Anton (1988) is one of the better recent 

examples of this.  I feel that such historical material is at best trivial and ineffective, and 

can sometimes be conceptually misleading.  The actual mathematics that is being 

presented is entirely unaffected, and no historical problems or conceptions are 

discussed.  Quite often, this sort of history only serves to perpetrate certain cultural 

mythologies.  For example, pictures of Newton and biographical scraps often surround 

modern material and notation that comes mostly from Leibniz and Euler.  Within such 

a flurry of anglophilia, the actual work and conceptions of Newton are almost never 

discussed, because they either depended on an intense involvement with geometry (see, 

for example, section 2.11), or because they depended on an empirical use of tables and 

interpolation which are now cloaked as algebra and analysis (Dennis & Confrey, 1993).  

With no sense of original conceptions, this type of history can leave students with the 

debilitating impression that mathematics sprang, complete and god-like, from the 

heads of divine icons. 
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 Let me turn to some recent, more serious, educational attempts to utilize history 

in an attempt to create a theoretical perspective for the development of the function 

concept.  Sfard (1992) discusses how students may or may not come to see functions as 

objects rather than processes, actions or algorithms.  She is concerned with how 

students move from an operational to a structural concept of function.  Sfard compares 

this process in students to historical developments in mathematics.  I would claim that 

her view of both of these processes accepts a hierarchical view of mathematics, and 

promotes a progressive absolutist view of history (Confrey, 1980).  That is to say, that 

history is seen only as a means to illuminate the march of progress towards the 

inevitable higher level of current mathematical practice.   

 Within this view of history Sfard thoughtfully discusses the difficulties that 

students encounter in the process of reification (from Latin res=thing).  She shows that 

students can not regard functions as single objects (e.g. as  points in a function space) 

unless they have reached a problematic level where such a view is required, and she 

parallels these discussions with historical controversies about the meaning of variables.  

Sfard uses history to stress that what may seem, to a modern mathematician, as a 

simple act of definition was once a source of considerable controversy.  Her discussions 

about appropriate levels of functional language for students are compared to the 

historical formalization of analysis in the period after Weierstrass.   

 I find such a view of history unacceptable, and therefore I reject its educational 

implications.  The historical march towards now is but one of many stories, and the fact 

that that one story has become the most dominant, is not due to its logical inevitability.  

If one forces mathematics and its history into such a hierarchy, a great many useful and 

beautiful conceptions are lost.  I see little reason why education should set as its goal to 

push students as rapidly as possible towards reification of the function concept.  I seek 

in history the broadest possible diversity of actions, and I want that conceptual 

diversity to blossom in the classroom.  I hope that the examples that I present will 
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display the otherness of history.  Newer and more compact notation may streamline 

certain thoughts, but will also obscure other useful and beautiful views.  Educationally 

valuable conceptions have been eradicated from the classroom by narrow views of 

history like the one taken by Sfard (1992).  

 Sierpinska (1992), like Sfard, uses mathematical history to investigate how 

students come to understand the notion of function, but she takes a somewhat broader 

view of history than does Sfard.  She briefly describes a variety of historical conceptions 

of functions and gives some details from original sources.  I would again claim, 

however, that her overall theory of history and its relations to education, remain 

progressive absolutist.  For example, geometric actions which generate curves (the 

entire subject of this thesis) is mentioned by her, but it is seen as an epistemological 

obstacle.  Although she initially states that such obstacles are not entirely negative, she 

states that "if we want to understand further, and better ..... we have to act against 

them" (1992, p.28).  The tone of Sierpinska's writing directly implies that curve drawing 

was a tedious phase of development that mathematicians in the seventeenth century 

had to go through in order to progress to the more advanced levels that led to modern 

functional concepts.  She concludes her discussion of "Functions and Curves" with the 

statement "a graph represents the function in an indirect, symbolic way" (1992, p.52).  

She thinks that one goal of education is to get away from the idea of a feedback loop 

where functions could also represent curves.  

 There is no indication in Sierpinska's article (1992) that by abandoning curve 

drawing something valuable might have been lost.  History is not seen by her as source 

of conceptual diversity, but almost as a set of pitfalls to be avoided or overcome.   She 

suggests that some sense of history can be useful in helping students to overcome these 

possible obstacles, but there is no indication that student investigations within a given 

historical conception might offer valuable insights that are obscured by modern 

conventions.  At the end of her article she suggests that students be given a "broad 
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spectrum of ways of giving functions" (1992, p.57), but the flexibility that she suggests is 

the usual narrow set of modern notations and graphs.  Curve drawing and its attendant 

"functions of a curve" are mentioned by her (1992, p.51), but do not appear in her final 

scheme, and, therefore, seem relegated to become a relics of history. 

 A very different view of the role of history in mathematics education is taken by 

Jahnke (1994).  He argues for the importance of seeing mathematics in a cultural setting.  

In order to accomplish this, he suggests that secondary students be exposed to some 

original historical sources that complement and conceptually diversify the traditional 

curriculum.  Mathematics entirely stripped of its origins and cultural setting is called by 

Jahnke "fast food mathematics" and, he argues, it can not be fully appreciated nor 

entirely comprehended.  He advocates for the exposure of students to the questions and 

problems that led to the genesis of mathematics, but he sees this exposure as an 

important, but separate part of curriculum that does not fundamentally change the 

standard approaches.  In college teaching, recently some have carried these historical 

ideas further, and created college mathematics courses which are taught directly from 

original historical sources (e.g. Laubenbacher and Pengelley at New Mexico State 

University; or Cohen at Cornell University).  

 I share Jahnke's view of the importance of historical genesis and cultural 

interpretation for mathematics education.  I feel that exposure to original source 

material can provide unique conceptual insights and that this would be extremely 

valuable especially for secondary teacher candidates.  Often even courses in  "history of 

mathematics" contain little or no original material, instead rewriting history in modern 

terms that eliminate conceptual diversity and social context.  Such progressive 

absolutist history can do more harm than good since it reinforces the belief the 

mathematics is an inevitable march towards the current situation.  More conceptual 

diversity is illuminated by the approach taken by Laubenbacher and Pengelley, where 
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specific mathematical topics are investigated by students entirely from original 

sources.7  

 While I wholly support the movement towards greater exposure to original 

mathematical texts and their cultural origins, that is not the main direction of this thesis.  

I seek fundamental reforms in the secondary curriculum inspired by diverse historical 

conceptions that are then reinterpreted in light of tools, technology, and student 

activities.  I am indebted to the work of historians who have preserved, translated, 

edited and made available the mathematical texts from which I have so richly benefited. 

I try to always keep in mind Jahnke's exclamation that "history of mathematics is 

difficult!"  (1994, p.141). 

 Since all historical accounts involve interpretation, one might ask what sort of 

historical interpretation will be provided here?  What sort of "rational reconstruction" 

(Lakatos, 1976) of mathematical history will I provide, and why is it valid?  Keeping in 

mind my theoretical perspective (Section 1.3), I approached the historical material with 

following intentions:   

1).  To understand the genetic epistemology of the relations between curves, equations, 

and functions.  

2).  To see the history of the function concept in relation to an epistemology of multiple 

representations. 

3).  To seek out examples of the interrelationships between grounded activities and 

systematic inquiry.       

 The history that will be presented in Chapter 2 focuses on specific mechanical 

tools.  When one builds a copy of one of these tools, and experiences its action, one is 

                                                 
7  Laubenbacher and Pengelley have been experimenting with this kind of teaching at the 
University of New Mexico at Las Cruces.  They hope to publish soon a collection of the source 
material that they have found most successful.  In January 1995 at the joint meetings of the 
MMA and the AMS they organized a contributed paper session devoted entirely to this method 
of teaching. 
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recreating history at a sensory motor level.  When I describe various forms of analysis 

of these tools that were carried out by seventeenth century mathematicians, I will try to 

communicate a strong sense of the original conceptions that shaped the genesis of these 

mathematical ideas.  Complete authenticity can only be obtained form a reading of 

original sources (they are referenced), but even if a modern reader does not consult 

these original texts, a profound and valid experience is to be had from the physical 

experience of the tools themselves.  Even crude cardboard replicas of these devices can 

convey much about their actions.    

 While researching the historical material for this thesis, I encountered many 

aspects of social and cultural history which provided various insights into how and 

why our mathematics curriculum has come to be what it is.  This led me to search more 

aggressively for the roots of certain developments in mathematical thought that have 

come to privilege some forms of expression over others.  I have sought to imagine how 

mathematics might be viewed in another light.  The main focus of this investigation 

always remains on how the physical tools shaped experiences, and how language, and 

notation were forged from those experiences.  Important cultural insights can indeed be 

gained from thinking about tools, and the activities and language which arise from 

them.  It is the history that it is embedded in direct experience with the curve drawing 

tools which shall indicate and validate my educational claims.  
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1.6  Educational Implications 

 A variety of epistemic and conceptual issues are raised by a close study of the 

tools involved in the historical genesis of analytic geometry.  I wish to argue that these 

issues have direct implications for curriculum reform.  Historical details have been 

included in what follows in order to highlight some different conceptions that suggest 

specific activities and approaches to curriculum.  Throughout Chapter 2, descriptions 

and analysis of important historical curve drawing devices have been interwoven with 

suggestions for physical experiments with linkages and paper folding.  These 

descriptions often utilize original figures from the seventeenth century.  Many other 

figures have been generated from computer simulations and animations which 

generalize and extrapolate these physical situations.  When thinking about the 

educational implications of these historical ideas, the possibilities of new electronic 

tools will be presented and discussed. 

 When focusing on the issue of how language and symbols are created in 

response to activities, computer simulations will provide an intermediary environment 

which will facilitate the flow of the feedback loop which I will propose as an 

educational model.  Computers lie somewhere in between the semiotic and the physical 

(Confrey, 1993a).  In their internal workings, they are strings of symbolic code, but the 

experience of a user of an application like Geometer's Sketchpad can feel, at times, very 

close to physical experiment.8  Curve drawing devices may have historically dropped 

out of mathematical discussions because of their physical limitations, and the increasing 

success of newly developed notation systems (e.g. Leibniz's calculus).  Computer 

applications, however, are creating a new environment where this approach can be 

effectively revived with greatly extended capacity.  The linkage discussed in Section 

                                                 
8   Research in this area of cognitive science is currently being pursued by the Educational 
Development Center in Newton, Mass. 
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2.12, for example, has a very awkward motion that is easily halted by cumulative 

friction.  Although conceptually it was very important to Descartes, it does not function 

well a mechanical device, but a computer simulation of that device is very satisfying.               

 In Chapter 3, students discuss their work using several physical curve drawing 

devices that placed them within an important historical conception of curves.  Although 

these experiments with students did not include computer simulations, the issues that 

they raised using the physical tools alone were profound and manifold.  As they 

investigated the actions which produced curves, and thought about different ways to 

analyze those actions, they confronted many issues about the relations between 

geometry, coordinates, and algebra.  The situation allowed them to experiment in their 

own ways, and to express their beliefs in contexts that were meaningful to them. 

 Both of students who were interviewed for the material in Chapter 3 found the 

actions of the three devices with which they worked, physically straightforward, and 

yet subtle and perplexing when they attempted to fully analyze the actions.  They were 

not in the habit of generating mathematical language from physical actions.  Although 

they were surprised and, at first perplexed, this did not lead to stagnating frustration.  

Quite the contrary, because of the seemingly simple actions which they were directly 

experiencing, they were determined to reach a certain level of conclusive analysis, using 

whatever language seemed appropriate.  Their approaches were quite different, and 

unlike many activities in mathematics classrooms, the linguistic form of their 

approaches was not predetermined.  The actions of the tools were the constant focus.  

Although they were free to use any language and symbols they wanted, their 

discussions, guided by their activities, led constructively to material that is important in 

the secondary curriculum. 

 The historical material, computer simulations, and student interviews will 

combine to support the three claims made at the end of Section 1.1 in the following 

ways.  Chapter 2 will mainly present a detailed reexamination of historical records, that 
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will demonstrate tools and activities which formed a basis of knowledge which was 

indispensable for the growth of the linguistic structures of analytic geometry, calculus 

and the notion of functions.  Most sections of Chapter 2 will also include computer 

experiments made using Geometer's Sketchpad, which will demonstrate how a variety of 

physical experiments can be extended in ways that allow elementary access to topics 

that are rarely discussed before calculus.  Chapter 3 will provide detailed analysis of 

student conceptions that will provide extensive support for the first two claims. 

 Although the third claim concerning tangents, areas, and arclengths is not 

addressed by the student interviews of Chapter 3, the extensive material in Chapter 2, 

and the remarkably clear and enthusiastic response of the students to the basic ideas of 

curve drawing, suggests that this would be a very fertile direction for future research.  

Students with experience with both physical devices and dynamic geometry computer 

applications might engage in detailed analysis of a large number of problems that are 

routinely delayed until after calculus.  It would be most interesting to see how they 

would respond to the formalisms of college mathematics if this larger experiment in 

constructivist education were carried out. 

 The educational and epistemological stances that I am taking can not  be 

separated from the curricular activities that I will suggest.  Genetic epistemology leads 

to a careful reading of historical sources which in turn immerses one in an epistemology 

of multiple representations.  The required checking between multiple representations 

leads to a careful consideration of tools and activities, and they in turn mediate 

knowledge, and the language in which it can be expressed.  This makes for a complete 

cognitive feedback loop.  These educational views have been shaped directly by the 

work of Jere Confrey and through her, indirectly by von Glasersfeld, Piaget, and 

Vygotsky.      

         An empirical epistemology of multiple representations is historically significant, 

and through the use of curve drawing devices, I shall provide compelling examples of 
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how this approach could invigorate classroom activities and discussions.  Lakatos 

(1976) suggested this approach, and the extensive work of Confrey has established a 

theoretical framework for how such an epistemology could shape educational practice 

(Section 1.3).  The theoretical pioneering work has been done.  It seems to me, that it is 

now time for the constructivist educational approach to enter into a phase of baroque 

elaboration.  This educational approach calls for an immense broadening of classroom 

activities at all levels of mathematics.  As the following chapters will show, direct 

geometric generation of curves can make a fundamentally important contribution to 

this base of activities.  
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Chapter Two: The Historical Role of Geometric Curve Drawing Devices 
 

2.1  Opening Comments  

 This chapter will present an investigation of a variety of physical curve drawing 

devices and techniques.  All of these ideas and concepts came from important historical 

sources, mostly from seventeenth century Europe.  The investigation, however, will not 

be solely historical.  Along with descriptions of original conceptions, I will discuss 

various ways to combine and reinterpret these ideas in light of modern computer 

applications, and modern educational goals and theory.  This rethinking of 

mathematical history will suggest more diverse approaches to the relations between 

algebraic equations and curves, as well some different views of the concept of a 

function and its relation to the notion of a parameter (see Section 1.2).     

 Section 1.3 discussed the work of Confrey, von Glasersfeld and others that view 

functions as a cognitive feedback loop that gains viability by moving between multiple 

representations.  Confrey's studies of secondary and undergraduate student 

conceptions and her consequent software (1994d), and curriculum development projects 

(1994c), stressed three important functional representations, i.e. tables, graphs and 

algebraic equations.  In her work with younger students she frequently mentions the 

need to develop a much stronger sense of ratio that is more closely tied to geometric 

similarity (1993c).  This chapter will suggest some ways to extend this work on 

geometric similarity into the secondary and undergraduate curriculum via mechanics 

and dynamic geometry.   

 By generating curves geometrically as an initial activity the possibilities for 

coordination between multiple representations become even broader than what is 

available in the three functional representations that Confrey analyzed in her 

pioneering work (1994c).  Although her computer software (1994d) allows for some 
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geometric manipulation of graphs it does not allow curves to be generated 

geometrically as a primary action.  Indeed, such activity goes beyond the usual 

mathematical notion of a function, however they may be represented.9  The question 

becomes: What is a representation of what?  Are curves visualizations of a functions? or 

are functions linguistic tools which can represent curves?  The former view is taken in 

most mathematics curriculum.  The tools that we give to students (e.g. graphing 

calculators) force one into this view.  An investigation of what happens when the latter 

view is taken, can help to complete a cognitive feedback loop that has a rich history.           

 Functions that will be investigated here as part of a cognitive feedback loop that 

flows back and forth between curve generating actions and their representations in a 

symbolic language, i.e. algebraic equations.  As was mentioned in Section 1.2, the 

difference between curves and graphs lies in their method of generation.  All of the 

examples that are discussed in detail here concern the situation where curves are 

generated first, and coordinates and equations provide a secondary analysis.  It is this 

part of the feedback loop, particularly the physical, grounded activity of curve drawing, 

that is underrepresented in our curriculum and often scarcely known even among 

trained mathematicians.  This chapter will restrict itself entirely to plane curves, because 

there is so much there that can be said that is both profound, and rarely addressed in 

our usual mathematics curriculum. 

 Much of what will be discussed involves neglected aspects of geometry, but no 

attempt will be made to construct a set of formal mathematical proofs from a more 

geometric standpoint.  Approaching analytic geometry as a cognitive feedback loop can 

avoid the establishment of any hierarchy of knowledge (von Glasersfeld, 1984, 1982).  If 

there is an extensive use of geometry in what follows it is presented in the interest of 

conceptual diversity and as an antidote to the preponderance of algebra in our 

                                                 
9  Parametric equations come closest. 
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mathematics curriculum.  Much of the lost diversity of seventeenth century European 

mathematics concerns the dynamic, mechanical generation of curves.     

 This chapter will establish the importance and power of this form of activity 

from the beginnings of analytic geometry, through to the development of calculus.  

Many tangent, area and arclength properties, usually discussed only in a calculus class, 

will be demonstrated in a setting that requires little more than a knowledge of similar 

triangles.  This material will suggest numerous ways to restore to our classrooms some 

of the grounded activity without which the development of the systematic language of 

calculus would not have been possible or necessary.  This discussion will move, in an 

almost circular manner, between static geometry, dynamic geometry, and algebraic 

equations.  Questions will be raised concerning the extent to which one can establish an 

empirical consistency between these various representations.  

 Mathematical experimentation, which first established a partial linguistic 

consistency between geometry and algebra, was a major topic of discussion in 

seventeenth century Europe, i.e. the period of the scientific revolution (Cajori, 1929).  

Because of this, a majority of the examples presented are taken from seventeenth 

century European sources.  It is in the discussions from this period that one can regain 

both a sense of doubt, and a sense of wonder, at the physical activities that allowed 

people to believe that such a consistency was possible, and that it could be symbolically 

expressed.  When presenting historical examples, I will usually try to stay as close as 

possible to the original conceptions of the writer, in an attempt to convey alternative 

mathematical concepts.  It is these alternative pathways that enliven and enrich the 

feedback loop which connects curves with analytic geometry and functions. 

 I am not approaching these issues from a belief that ontogeny recapitulates 

phylogeny.  This rethinking of the historical genesis of the links between curves and 

equations is important for two reasons.  First, although our secondary curriculum is 

almost entirely concerned with seventeenth century European mathematics, much of 
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the beauty and diversity of that era have been lost from our textbooks and even from 

books on the history of mathematics.  Hopefully, the reader will look with an open 

mind and find something here that is beautiful, profound and useful in the classroom.  

Second, the presence of computers in the classroom and the availability of software 

packages that allow for dynamic geometric experimentation, make much of the 

seventeenth century study of curves quite accessible to many students with only the 

most basic computer skills.  Most sections of this chapter will begin with a figure taken 

directly from a seventeenth century text, and then animate that figure using the 

software, Geometer's Sketchpad .  Analysis of each example will include both history and 

modern educational possibilities.  

 My own investigation of curve drawing devices began with a careful reading of  

René Descartes' Geometry   (1952), first published in 1637.  The original goal of my 

reading was to trace the history of exponents and their ties to geometric similarity (see 

Section 2.12), but I was immediately struck by the fact that not once did Descartes create 

a curve by plotting points from an equation.  His method was always first to devise 

physical or geometric devices for the drawing of curves, and then to analyze the 

dynamic actions of the devices until an equation emerged.  I was so struck by these 

devices that I began building simple models of them using cardboard, thumbtacks and 

rubber bands.  Often crude models took only a few minutes to build.  They gave an 

immediate and comprehensible feeling for the actions which built the curves.  Descartes 

intended each part of the equations which emerged in his work, to be seen as a code for 

a particular geometric invariance, most often a set of similar triangles (1952; Lenoir, 

1979). 

 After playing around with cardboard models for several months, I was 

introduced to the software Geometer's Sketchpad.  At first, I found this software entirely 

unnatural for the purpose of simulating moving hinged rods (usually called linkages).  

Every line segment in this software behaves essentially like a rubber band unless 
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confined by a circle, or defined as a translation of another fixed length.  After a while I 

learned to work around the limitations of the software, and used it to simulate a large 

number of linkages from a variety of sources.  For a time, I gave up building physical 

models altogether, and fell under the spell of the computer simulations.  They were a 

great aid in investigating the more difficult devices particularly those of Isaac Newton. 

 When I subsequently began to seriously consider how I might present some of 

these curve drawing linkages to students, I once again began building physical models 

and trying to improve on the materials and designs.  I was surprised at how my 

understanding of some of the simpler devices was deepened by the task of building 

moving linkages.  I began noticing a variety of details and interconnections between 

devices that were largely obscured by the computer simulations.  Most noticeable of all 

was a feel for the related rates of motion between different links in each device.  

Physical instincts revealed a variety of properties that I had missed on the computer.  

When I watched students experiment with my improved linkages even more was 

revealed, but that is the subject of the Chapter 3. 

 Both my own experiences and those of the students in Chapter 3 confirm the 

assertions of Jere Confrey that mathematics can be viewed as a dialectic between 

grounded activity and systematic inquiry (1993a).  Physical linkages provide a solid 

sense of experimentation with little mystery.  Although linguistic analysis may be 

difficult, all the connections in a linkage are immediately tangible and comprehensible.  

Algebraic equations can represent these actions in a symbolic way, and, vise versa, all 

algebraic curves can be drawn with linkages (Artobolevskii, 1964).  Computers provide 

an interesting intermediary tool environment.  They allow one to rapidly generalize and 

extend the range of physical devices, yet they often fail to provide the fundamental 

intuitions which can lead to appropriate conjectures and genuine mathematical 

understanding.  Computer simulations are also mysterious.  A great deal is hidden from 

view and from touch. 
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 My advice to the reader is never to depend entirely on computer animations.  

Although in the sections that follow I will make extensive use of computer simulations 

of curve drawing devices, one can often quickly build a simple cardboard model which 

can be quite revealing.  Many of the figures that are included in this chapter were made 

using Geometer's Sketchpad.  In some cases I will present a pair of figures together on a 

page that show a device in two different positions; using two frames from an animation 

to convey on paper some sense of motion.  Preceding such figure, I have usually 

included a drawing from the seventeenth century of an actual linkage device.  These 

drawings are beautiful and historical, but even more important is the sense of 

physicality that they convey.  My favorite examples are taken from the work of a friend 

and contemporary of Descartes, Franz van Schooten (1615 - 1660).10  The figures from 

van Schooten's work (1657) include drawings of human hands manipulating the 

devices.  On paper, this is as close as possible to physicality. 

 Not every topic in this chapter is strictly historical, and the history that is 

given is not always strictly chronological.  The intention is to build towards a 

concept of analytic geometry as a broad and diverse cognitive feedback loop, 

wherein students can conduct their own experiments which reveal the possible 

inter-consistency of geometry and algebra.  I will occasionally jump around 

chronologically in order to investigate a particular issue.  At a few points, inspired 

by historical examples, I have investigated certain issues in my own fashion, and 

built my own examples that take advantage of the experimental possibilities of 

computers (most notably Sections 2.12 and 2.14).  Every attempt will be made to be 

clear about what is and is not strictly historical.  Secondary sources and loose 

translations can be very misleading.  Original sources have been consulted, 

                                                 
10  The name "Franz van Schooten" is listed in references sometimes as "Schooten, Franz van"  
sometimes as "Van Schooten, Franz" and sometimes in Latin as "Schooten, Francisci  á."  
Throughout this work I will use the first listing. 
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whenever possible, in an attempt to convey interesting mathematical conceptions 

that lie outside our mainstream curriculum. 
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2.2  Apollonius and Conic Sections  

 The intent of this chapter is to discuss the dynamic generation of curves using a 

variety of continuously moving devices.  Most of the sources for this material are from 

seventeenth century Europe.  The mathematicians of this period, however, all read 

Apollonius (262 - 200 BC.).  Often original works of mathematics from  this period were 

written as commentaries on the work of Apollonius or as reconstructions of supposedly 

lost works of Apollonius (e.g. Schooten, 1657).  When it came to the study of curves they 

often saw themselves as attempting to extend and generalize the work of Apollonius, 

especially The Conics (1952; Heath, 1961).  Important Arabic additions to The Conics from 

the tenth and eleventh century were also crucial to the mathematics of the scientific 

revolution (Joseph, 1991).  In fact, even to this day, large parts The Conics of Apollonius 

do not exist in their original Greek form, and are known to us only through Arabic 

translations. 

 For several reasons, we must look briefly at some of the theorems and definitions 

from Apollonius.  First, although his approach was entirely from static geometry, The 

Conics  is a systematic approach to conic sections which takes the view of a conic curve 

as a set of parallel, ordered line segments from an axis.  This approach will be discussed 

in detail shortly, and will be seen to be very close to the idea of coordinate geometry.  

For this reason certain concepts developed in The Conics  were fundamental in the 

development of the function concept.  Second, The Conics  contains a variety of beautiful 

theorems that are very little known today.  In particular, the theorems on symmetry, 

axes and conjugate diameters are well suited to secondary education, and could help 

connect ratio and similarity with coordinates and equations in a non-linear setting.  

These theorems were used extensively throughout the seventeenth century, for example 

in Newton's Principia  (1952) for the discussion of orbits (See Section 2.5). 
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 In this section I shall describe a few demonstrations from static geometry, and 

then summarize some concepts and results which I will explore later in the empirical 

setting of the dynamic curve drawing devices from seventeenth century Europe.  There 

is strong evidence that most of the properties of conic sections from the first three books 

of Apollonius were known before the time of Apollonius but the earlier works, such as 

Euclid's books on conics, have all been lost (Heath, 1961).  It was the work of Apollonius 

coming from Arabic culture that was influential in seventeenth century Europe.  I shall 

make no serious attempt to reconstruct the history of curves in ancient Greek culture 

nor in medieval Arabic culture, although there is a great deal of material there could be 

of educational value.   

 For the reader who is intrigued by this section and wishes to explore the 

details of The Conics , I suggest looking at the wonderfully readable work by Heath 

(1961), but simultaneously consulting a more literal translation of Apollonius like 

that of Taliaferro (1952).  Many of the original concepts and definitions are 

obscured by Heath in an attempt to make The Conics  more palatable to a reader 

schooled in modern mathematics.  Even though Greek mathematics is not the main 

subject of my investigation, the kind of rethinking of mathematics that gives 

historical investigations educational value requires, whenever possible, a close 

attention to original texts. 

 When conics are discussed in our secondary curriculum, it is mostly through the 

use of a set of standardized equations which are conceptually limiting in several ways.  

First, although some picture or model of a plane intersecting a cone is usually shown, 

there is usually no attempt made to demonstrate that the curves generated by the 

standard equations are actually the same as these conic sections.  Second, the standard 

equations that are given are far from general, and students often fail to recognize conics 

in other algebraic forms, for example, that   

� 

y =
5

x
+ 3x   is the equation of a hyperbola.  
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This second issue will be addressed in latter sections of this chapter by looking at 

different drawing devices which naturally give rise to various forms of equations.  I 

turn now to the first issue. 

 When I began reading Apollonius I was startled to find right at the beginning 

that there were some important basic aspects of cones that I had never thought about.  

A cone, for Apollonius, is the shape generated by considering all lines in space that pass 

through a fixed circle and a fixed point (the vertex) not in the plane of the circle (this 

really generates a pair of cones).  The cone that most often comes to mind is the right 

cone.  That is the case where the line from the vertex to the center of the fixed circle is 

perpendicular to the plane of the circle.  In this case, all planes parallel to the fixed circle 

will have circular sections with the cone, and these are the only planes that make 

circular sections.  If the line from the vertex to the center of the fixed circle is not at right 

angles to the plane of the circle, then there are exactly two families of parallel planes 

whose sections with the cone are circles.  One of these families is parallel to the fixed 

generating circle and the other is called by Apollonius the subcontrary sections. 
 

    
   Figure 2.2a 
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 If one looks at the triangles formed by the diameters of the circular sections (both 

families) and the vertex of the cone, they are all similar.  That is to say in Figure 2.2a if 

the triangles 

� 

ABC  and 

� 

ADB  are similar then all sections of the cone parallel to either 

one of these circles will be circles.  This is Book 1, Proposition 5 in Apollonius, and in all 

my years of studying mathematics I had never considered such a case.  This is not an 

isolated oddity.  Quite the contrary, it is the beginning of whole series of duality 

propositions about conics which are fundamental in many later approaches to curves 

and functions.  As is often the case, similarity is at the heart of the issue. 

 I shall now demonstrate that when any cone is sliced by a plane which is parallel 

to one of its generating lines (but not containing a generating line); the resulting section 

is a parabola, in the sense that we know it as a curve, one of whose coordinates is 

proportional to the square of the other.  This argument is taken from Apollonius (Book 

1, Proposition 11), but was known much earlier being attributed by many ancient Greek 

writers to the early geometer Menaechmus (Coolridge, 1968).  This argument does not 

depend on the cone being a right cone.  All that is needed is some set of parallel circular 

sections. 
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        Figure 2.2b 
 

 In Figure 2.2b let the curve 

� 

KAL be formed from slicing the cone with a plane 

parallel to the line 

� 

EG .  Let 

� 

GKH  be a circular section and let 

� 

D, 

� 

C , and 

� 

E  lie on any 

parallel circular section (with 

� 

C  on the curve).  Now 

� 

LF  is the geometric mean of 

� 

HF  

and 

� 

FG , i.e. 

� 

LF
2

= FH ! FG .  Likewise 

� 

BC  is the geometric mean of 

� 

DB  and 

� 

BE , i.e. 

� 

BC
2

= BD ! BE  (this is a fundamental property of the diameter of a circle and any chord 

perpendicular to it).  Since the parabolic section is parallel to 

� 

EG , 

� 

BE = FG .  Since 

triangles 

� 

ABD  and 

� 

AFH  are similar to each other, we have the proportion 

� 

BD:BA = FH :FA .  If we think of sliding the parallel circular sections, and watching the 

two segments on the diameter, one of them is fixed (

� 

BG = FE ), and the other (

� 

BD  or 

� 

FH ) is proportional to the distance along the axis of the curve (

� 

BA  or 

� 

FA ).  Hence the 

distance along the axis of the parabola (

� 

BA  or 

� 

FA ) is proportional to the square on the 

lateral distance out to the curve (

� 

BC  or 

� 

FL) by the geometric mean property of circles.   

 Introducing variables, we could let 

� 

AB = x  and 

� 

BC = y , and then say that there 

exists some constant of proportionality, 

� 

p , such that 

� 

(p ! x) !(BE ) = y
2 .  The constant, 

� 

p , 
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is the proportionality constant from the similar triangles just mentioned (i.e. 

� 

p =DB:AB ).  It projects from the plane of the parabola (where 

� 

x  is measured) to the 

planes of the circular sections. 

 Of course Apollonius did not write an equation.  Instead he showed how to 

construct a single line segment (called the latus rectum), and stated that the rectangle 

formed by this segment and 

� 

AB  is always equal to the square on 

� 

BC .  This latus rectum 

(whose length equals 

� 

p !BE ) works for any parallel circular section along this parabola.  

The latus rectum is a tangible line segment in his construction.   

 What I wish to stress is the view taken in this construction of a parabola as a 

changing set of geometric means where one of the segments is constant (in Figure 2.2b it 

is 

� 

BE = FG  that is constant).  In the cone, the circles which create these geometric means 

are not in the plane of the parabola, but the proportionality still holds there because of 

the similar triangles (i.e. 

� 

!ABD " !AFG ).   

 This view can be extended to the elliptic and hyperbolic cases by 

considering a linear proportional change in 

� 

BE  as we move down the cone. 

� 

BE  

decreases in the elliptic case and increases in the hyperbolic case (see Figure 2.2b).  

In the elliptic case the equation coming from the geometric means on the series of 

circular sections would be: 

� 

y
2

= p ! x( ) ! " p ! k # x( )( )  ; where 

� 

y , 

� 

x , and 

� 

p  are as 

before; 

� 

k  is the entire finite length of the axis along which 

� 

x  is measured; and 

� 

! p is 

a constant of proportionality that projects 

� 

k - x  onto the circular sections in the 

plane containing 

� 

AHF  (

� 

p = ! p  only in the case where the ellipse is formed as a 

section of a cylinder).  This equation comes from the cone in the same way as 

before except that 

� 

BE is replaced by 

� 

! p "(k - x) . This equation can be rewritten as: 

� 

y
2

p ! " p !
k

2

# 

$ 

% 

& 

2
+

x '
k

2

# 

$ 

% 

& 

2

k

2

# 

$ 

% 

& 

2
= 1 which is the standard form given in modern textbooks, 

but with a translation because 

� 

x  is measured from a vertex at one end of the axis 
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instead of from the center.  For the hyperbola, simply replace 

� 

 ! p "(k - x)  with 

� 

 ! p "(k + x)  to indicate the increasing lengths of 

� 

BE . 

� 

k  in this case is the distance 

between the vertex on the hyperbola and the vertex of the opposite branch.  Again 

it should be noted that Apollonius did not write equations, but made these 

statements in ratio form with  geometrically constructed adjustments to the latus 

recta.  One should also note that Apollonius gave the converse of these arguments, 

i.e. that any curve with these geometric mean properties (equations) must be a 

conic section, because the geometric means can always be constructed from a 

series of circles whose radii are changing arithmetically (hence a cone). 
 A tenth century Arabic mathematician, Ibn Sina, wrote several commentaries on 
Apollonius in which he showed how to draw conics using ruler and compass (Joseph, 
1992; Berggren, 1986).  He simply flattened the picture, and put the series of circles in 
the same plane as the curve.  His method was still the same.  He built, for example, a 
parabola using a series of geometric means where one of the segments is held constant.   
Looking at Figure 2.2c, one sees a series of tangent circles all passing through the point 

� 

S .  A fixed vertical line at 

� 

A  constructs the geometric means between 

� 

SA (constant) and 
a series of segments 

� 

AT , 

� 

AU , 

� 

AV .  These segments are then plotted against the series of 
geometric means 

� 

AX , 

� 

AY , 

� 

AZ , to give a set of points

� 

A , 

� 

B, 

� 

C , 

� 

D,  all of which lie along 
a parabola.  In this picture the horizontal distances of the points (

� 

B, 

� 

C , and 

� 

D) from 

� 

A  
is proportional to the square on their vertical distances.  The latus rectum is

� 

SA. 
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    Figure 2.2c 
 

 This and other Arabic methods of drawing conics were static in the sense that 

they allowed one to plot as many points on the curves as desired, but they did not draw 

the curve in a continuous way.  This particular construction of Ibn Sina, however, can 

be easily adapted as a design for a dynamic mechanism which will draw parabolas in a 

smooth continuous manner.  Imagine a nail driven in at 

� 

S , and a carpenter's square 

with the vertex of its right angle riding on the line 

� 

AX and one arm resting against 

� 

S .  

As we move the vertex 

� 

X  along the vertical line the other arm of the square will be 

intersecting the line 

� 

SA at points 

� 

T  such that 

� 

AX  is always the geometric mean of 

� 

SA 

and 

� 

AT .  Using a second carpenter's square 

� 

XBT  we can continuously locate the points 

on the parabola.  Figure 2.2d shows two positions of an animation of such a device 
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using Geometer's Sketchpad.  The point 

� 

X  is being moved along the vertical line to drive 

the animation while the locus of the point 

� 

B draws the parabola. 
 

            

  
    Figure 2.2d 
 

 This particular dynamic adaptation of Ibn Sina's construction was 

suggested to me by David Henderson, and was not taken from any historical 

source.  It is similar in nature, however, to many of the devices from the 

seventeenth century that I will soon discuss.  These opening examples provide a 

sense of one of the directions that this chapter will take, in that they allow the 

reader to see a transition from classical geometry to a dynamic situation where 

actions generate curves.  I shall want to assert that an analysis of such actions 

provides an important groundwork for understanding the evolution of modern 

notions of analytic geometry and functions. 
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 Arabic interest in drawing conic sections was spurred by their development 

of methods for solving cubic equations by intersecting two conic sections (e.g. by 

intersecting a parabola with a hyperbola).  In the work of Omar Khayyam, a 

general geometric method for the solution of cubics is given (Joseph,1991).  These 

methods had a profound impact on later Western mathematics (Katz, 1993).  For 

example, one of the primary goals of Descartes' Geometry (1952) was to extend 

these Arabic methods by finding new ways to draw curves whose intersections 

would yield solutions to equations of arbitrary degree.11   As we shall see in the 

following sections, the new views that transformed European mathematics in the 

seventeenth century were not just a move from geometry to algebra, but perhaps 

more importantly a move from a static to a dynamic geometry that involved time 

and motion.    

 Before discussing more examples of dynamic curve drawing actions, there 

are several more concepts from Apollonius which I wish to describe.  In the 

opening definitions of The Conics  the following definition appears: 
 

4.  Of any curved line which is in one plane I call that straight line 
the diameter which, drawn from the curved line, bisects all 
straight lines drawn to this curved line parallel to some straight 
line; and I call the end of that straight line (the diameter) situated 
on the curved line the vertex of the curved line, and I say that 
each of these parallels is drawn ordinatewise to the diameter 
(Apollonius, 1952, p. 604). 
 

                                                 
11  One should keep in mind that equations to be solved were frequently stated first as geometry 
problems (e.g. doubling a cube, trisecting an angle, or finding the parameters of curves that 
meets certain tangent requirements).  This was true for both  Arabic and European 
mathematicians up to 1650. 



    

David Dennis Curve Drawing Devices http://www.quadrivium.info  
 

52 

When I first read Apollonius, I was totally perplexed by this definition, because it 

only makes sense if one is aware of some important symmetry and duality 

properties that hold for all conic sections. 

 It turns out that, in the case of circles, ellipses, and hyperbolas, the 

diameters are exactly the set of lines which pass through the center.  In the case of 

the circle, the ordinates are always perpendicular to the diameter, but in the case of 

other conics this is not always so (see Figures 2.2e, 2.2f, 2.2g).  The ordinatewise 

direction is the set of chords which are all parallel to the tangent line at the vertex 

of the diameter.  It was surprising to me, at first, that such a family of bisected 

chords existed except along an axis of symmetry.  This is never mentioned in 

modern discussions of conic sections, except in certain projective treatments.  

Apollonius defines an "axis" as a special case of a diameter where the family of 

bisected chords are perpendicular to the diameter. 
   

  
    Figure 2.2e 
 

 Figure 2.2e shows an ellipse with center, 

� 

C .  Choosing an arbitrary point 

� 

P  on 

the ellipse, 

� 

PC  is a diameter according to the Definition 4, because all of the chords 

parallel to the tangent at 

� 

P  will be bisected by 

� 

PC .  One can view this figure as a 

projection of a circle (although Apollonius did not explicitly do so).  Another property 

of conics, that is demonstrated in Apollonius, is that the chord 

� 

Q ! Q  which passes 
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through the center 

� 

C  has as its ordinates (i.e. bisected chords) all chords parallel to 

� 

PC .  

Hence the tangent at 

� 

Q  is also parallel to 

� 

PC .  Apollonius called 

� 

Q ! Q  the conjugate 

diameter to 

� 

P ! P .  This is an example of a fundamental duality property of all conics.  

We shall return repeatedly to this concept of conjugate diameters in Sections 2.5 and 2.6, 

and see its relevance for both mechanics and planetary orbits. 
   

  
    Figure 2.2f   

 Let us look next at these bisected chords and conjugate diameters on the 

hyperbola (see Figure 2.2f).  It remains true that any line through the center, 

� 

C , will 

bisect all chords (e.g. 

� 

Q ! Q ) parallel to the tangent at the vertex 

� 

P .  There is a line 

through center which is parallel to the ordinates with respect to 

� 

PC , but it does not 

intersect the curve.  It is still, however, a conjugate diameter in the sense that any chord 

parallel to 

� 

PC  will be bisected by this line through 

� 

C .  Such chords (e.g. 

� 

P ! P ) go 

between the two opposite branches of the hyperbola instead of being contained within 

one branch.  Although this "conjugate diameter" does not intersect the curve, 

Apollonius gives a finite length centered at 

� 

C  so that it has the same ratio properties as 

in the elliptic case.  This is a generalized version of what is usually done in classrooms 
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when a specific rectangle is constructed in the middle of a hyperbola having the 

asymptotes as its diagonals. 
 

  
    Figure 2.2g  
 

 Turning to the parabola adds more justification to Apollonius' definition of a 

diameter.  A parabola has no center (it is at infinity) but it does have many diameters.  

Without projective methods, these diameters can not be defined as lines through the 

center.  They turn out to be all lines which are parallel to the axis of symmetry (see 

Figure 2.2g).  In this case none of the diameters intersect each other (unless one includes 

the point at infinity), so there are no pairs of conjugate diameters, but any vertical line 
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in Figure 2.2g (e.g. 

� 

PC ) will bisect all chords parallel to the tangent at its vertex 

� 

P  

(e.g.

� 

AQ = A ! Q , 

� 

BR = B ! R , and 

� 

CS =C ! S ).    

 Apollonius demonstrated ratio properties for each conic section, that if translated 

into algebra, and applied to the axes (in the Apollonian sense), would yield our modern 

standard equations.  He demonstrated, however, that these ratio properties are true for 

any of his diameters.  In modern algebra this implies that the form of the equations of 

conic sections remains unchanged if we coordinatize the curve along different 

diameters, provided we always use the ordinate direction appropriate to the diameter 

(i.e. a non-perpendicular coordinate system using the direction of the bisected chords).  

Only the constants (e.g. the latus rectum in the parabolic case) will have to be adjusted.  

When we use our standard equations of conics (coordinatized perpendicularly along 

the axes of symmetry), we can choose either the positive or negative square root to find 

pairs of symmetrical points.  This Apollonian bisection property shows that this can 

also be done using any diameter, even if it is not an axis of symmetry.     

 For example, in Figure 2.2g, if we use the diameter at

� 

P , then for any point 

� 

C , we 

will have that 

� 

CS
2 (

� 

= C ! S 
2 ) will be proportional to

� 

PC .  The right triangle 

� 

CSD  will give 

us the appropriate new proportionality constant, relative to the axis the of symmetry, 

by taking the ratio of the squares of 

� 

CS  to

� 

DS .  For example let us assume that the 

parabola in Figure 2.2g has the equation 

� 

1 ! y = x
2 with respect to the (axial) 

perpendicular coordinates with the origin at the vertex.  Suppose we then construct the 

diameter (vertical line) through the point 

� 

P = (1,1)  and use parallel chords all having a 

slope of 

� 

+2  as our ordinates.  Supposing that 

� 

P = (1,1)  in Figure 2.2g, that is to say, let 

the coordinates of the point 

� 

Q  on the parabola, be given in the new system as 

� 

! x = AQ  

and 

� 

! y = PA ; or of the point

� 

S , as

� 

! x = CS , and

� 

! y = PC .  The equation of the parabola in 

these coordinates will be 

� 

5 ! " y = " x 
2, because the ratio 

� 

CS
2
:DS

2
= 5:1  (coming from a right 

triangle with legs in a 

� 

2:1 ratio).  For example, the points 

� 

2,4( )  in the axis system 
becomes 

� 

5,1( )  with respect to the diameter through P.  The point 

� 

! 5,1( )   is on the 
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curve at the other end of the bisected chord.  Putting the constant (i.e. 5) with 

� 

y  

preserves the dimensional integrity of the statement (i.e. it says that a rectangle equals a 

square).  Apollonius would say that the latus rectum with respect to the new diameter 

is five times the latus rectum with respect to the axis.  Such a statement avoids choosing 

a unit.   

 To demonstrate the statements in the previous paragraph, look back at Figure 

2.2b.  If the cone is oblique such that the plane containing 

� 

A , 

� 

H , and 

� 

G  is not 

perpendicular to the plane of the base circle 

� 

KHLG , then 

� 

AF  will not be the axis of the 

parabola but it will still be a diameter (Apollonius, Book 1, Prop. 7). 

� 

BCand 

� 

FL  will still 

be ordinates with respect to 

� 

AF , but they will not be perpendicular to 

� 

AF  (they will 

still appear as in figure 2.2g) .  The previous discussion of Figure 2.2b remains valid 

since it depended only on having a series of parallel circular sections which produce a 

series a geometric means. 

� 

AB  is still proportional to 

� 

BC
2 .  The form of the equations 

remain the same.  The same is true for ellipses and hyperbolas.  Ratio and similarity are 

more flexible and general than they often appear in our usual curriculum.     

 For the moment, this is all I wish to say about The Conics  (1952) of Apollonius.  I 

have sketched a series of properties of conic sections, although I have no intention of 

discussing, in detail, the proofs and demonstrations that were given by Apollonius.  

Such a classic and readily available work speaks for itself, although some sense of the 

direction of this work is most helpful before one attempts to read The Conics  

(Boyer,1968; Heath, 1961).   

 Today  even the few conic properties from Apollonius that I have mentioned are 

not well known, even among trained mathematicians.  I think that this is because very 

few people have much direct physical or mathematical experience with conics or any 

other curves.  Grounded activity in this case has almost disappeared from our 

mathematics curriculum.  For example, the duality of the conjugate diameters, and the 

non perpendicular coordinate systems they imply, are only discussed very indirectly in 
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a modern course on linear algebra, but in this highly generalized and abstract setting 

there is usually no mention of the geometric implications of the matrix algebra.  Look, 

for example, at the discussion of bases and duality in a standard text in linear algebra 

like Hoffman & Kunze (1971).  

 I do not suggest reintroducing some form of the work of Apollonius into our 

secondary curriculum .  Instead I will show in the following sections of this chapter 

how these and other properties of curves could be experienced through the dynamic 

activity of curve drawing.  The following investigations will stress empirical 

experimentation with curves  For example, the bisection properties of conic chords 

mentioned above might be explored quite simply in the following way.  Draw a conic 

curve, and draw any chord, then draw another chord parallel to it.  Next find the 

midpoints of these two chords and draw the line connecting them until it meets the 

curve.  Check empirically that the tangent to the curve at this point is parallel to the 

chords.  Check that any other chord parallel to the first two also has its midpoint on this 

line.  Check that the center of the curve is on this line (if it has a center).  Such an 

investigation of the tangent properties of conics could be applied to a variety of 

quadratic problems concerning maximum and minimums, mechanical devices, falling 

bodies, or planetary orbits.  A full understanding of conic tangents can be had using 

only the most elementary geometric ideas.    

 Of course such an activity would first require ways to accurately draw such 

curves.  Slicing cones is not the most convenient way, nor is it always the most 

revealing.  Apollonius got away from cones quite rapidly and discussed conics as 

curves in the plane.  I shall be investigating dynamic actions that produce curves, 

usually linkage drawing devices.  These have several educational advantages.  

They are essentially two dimensional.  They can often be easily built from 

cardboard, wood or metal.  They can be simulated on readily available computer 

software.  Most important of all, however, is that they provide a beautiful example 
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of a situation where geometry and algebra meet in a set of grounded activities 

which could serve as wonderful introduction to equations, functions, and 

parameters.  This interweaving of geometry and algebra can be seen both 

intellectually and historically as a platform from which to construct and validate a 

variety of language and notations, one important example being the calculus of 

Leibniz. 
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2.3   Abscissas, Ordinates, and Functions of a Curve  

 I must begin here with a confession.  In my discussion of Apollonius' theory 

of diameters and ordinates I quoted the words "ordinate" and "ordinatewise" in my 

discussion knowing that they were conceptually misleading.  These words appear 

in Heath's translation (1961) as well as in the more literal translation, although 

there a footnote is included (Apollonius, 1952, p. 604).  Apollonius never used any 

one noun that could be reasonably be translated as "ordinate."  Instead he always 

used phrases like "parallel line segments applied in order."  Even in Descartes' 

Geometry  (1952) the words "abscissa" and "ordinate" never appear except in 

English translations.  He continued to use active phrases similar to those of 

Apollonius.  Consult, for example, the bilingual, facsimile edition of The Geometry  

where the single English word "ordinates" is given as the translation of the phrase 

"les pareilles lingnes sont appliquées par ordre"  (1952, p. 88).  On this same page the 

word "diametre" (intended in the Apollonian sense) is routinely translated as "axis" 

which, with modern readers, tends to limit the generality of his arguments.   

 These kinds of translation imply more than just expedience.  Phrases 

indicating action are here being replaced with single nouns.  Modern scientific and 

educational values tend to move us as quickly as possible in the direction of 

objective abstraction.  The actions which generate curves are replaced with a 

notion of a function as an object expressed in an abstract equation.  I am not 



    

David Dennis Curve Drawing Devices http://www.quadrivium.info  
 

60 

universally opposed to such conceptions, except when they are used to entirely 

cloak the physical actions which form the genetic roots of the function concept 

(Confrey, 1993c).  I certainly do oppose the educational opinions of those, like 

Sfard (1992), who advocate moving as quickly as possible to a view of entire 

functions as objects, and actively seek to discourage students from a view of 

functions as actions.  This glorification of the severing of mathematics from its 

experiential roots can only increase our "suffocation in specialization" (Courant, 

1984, p.132).  It is these values that I feel are at play in the issues of translation 

mentioned above. 

 When the notion of a function evolved in the mathematics of the late 

seventeenth century, the meaning of the term was quite different from the modern 

set theoretic definition, and also different from the algebraic notions of the 

nineteenth century.  The main conceptual difference was that curves were thought 

of as having a primary existence apart from any analysis of their numeric or 

algebraic properties.  Equations did not create curves, curves gave rise to 

equations.  Equations, functions, and parameters were thus derived from curve 

generating actions.  When Descartes  first published The Geometry   in 1638, he 

derived for the first time the algebraic equations of many curves, but never once 

did he create a curve by plotting points from an equation (1952).15  Geometrical 

methods for drawing each curve were always given first, and then by analyzing 

the geometrical actions involved in the curve drawing apparatus he would arrive 

at an equation that related pairs of coordinates (not necessarily at right angles to 

each other).  Descartes used algebraic equations to create a taxonomy of curves 

                                                 
15  In the same year Fermat did approach the subject from the standpoint of graphing equations, 
but  even in his work the study of equations made extensive use of geometric transformations of 
coordinates which almost amount to curve drawing, as I shall show in section 2.10. 
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(Lenoir, 1979).   An isolated equation that was not a code for a geometrical action 

had, for him, no epistemic significance.   

 This tradition of seeing curves as the result of geometrical actions (as 

opposed to graphs) continued in the work of Roberval, Pascal, Newton, Leibniz, 

and others of that time.  The term "function" was introduced into mathematics 

very late in the seventeenth century, by G. W. Leibniz (1646 - 1716), as a line 

segment or ratio that could be determined from each point on a curve relative to a 

given line or axis (Arnol'd, 1990).  Descartes (1952) used the lower case letters

� � 

x , 

� 

y , 

� 

z  to represent variable lengths along curves, but he did not create any specific 

system of names nor did he ever use the term "function". 
 

  
  

� 

PO= ordinate 

� 

OA= abscissa    
  

� 

PT= tangent  

� 

OT = subtangent 
  

� 

PN = normal  

� 

ON = subnormal  
    Figure 2.3a  
  

 Leibniz considered, among others, six different functions of a curve and 

gave them the following names: abscissa, ordinate, tangent, subtangent, normal, 

and subnormal.  These six are shown in Figure 2.3a, for the point 

� 

P  on the curve, 
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relative to the axis 

� 

AO .  The line 

� 

PO  is perpendicular to 

� 

AO .  The line 

� 

PT  is 

tangent to the curve at 

� 

P , and the line 

� 

PN  is perpendicular to the tangent, 

� 

PT .  

Other geometers of the seventeenth century (e.g. Pascal, Barrow and Huygens) 

had begun discussing some of these objects connected with curves, and had given 

them names (e.g. Pascal used the term "ordonnées", and Barrow used the term 

"subtangent"), but their discussions focused on them one or two at a time (Struik, 

1969).  Leibniz considered them all as a system associated with each point on a 

curve, and so gave them the collective name: "functions" (Arnol'd, 1990).      

 It is important to note here that the curve and an axis must exist before 

these six functions can be defined, and that Leibniz was using the term "axis" in a 

more general way than did Apollonius  He no longer required the curve to have 

the symmetry of bisected chord ordinates, but he did require the ordinate direction 

to be perpendicular to the axis.  In this second sense he was still following the 

terminology of Apollonius concerning the distinction between an axis and a 

diameter, but Leibniz wanted to consider curves more general than conics, 

including those without symmetry.  An axis here was a reference line for 

perpendicular ordinates, but it was no longer required to be an axis of symmetry, 

although this was done whenever possible. 

 In this definition, the abscissa and ordinate may at first seem to be a 

parametric representation of the curve, but this is not the case.  No parameter, like 

time or arclength, is involved.  The setting is entirely geometric.  From the 

geometric point P, the line segments (functions) are defined relative to the axis 

� 

AO .  

Abscissa is Latin for "that which is cut off," i.e. a piece of the axis, 

� 

AO , is cut off.  By 

cutting off successive pieces of the axis, the curve gives us a series of ordered line 

segments 

� 

PO .  Hence the term ordinate .  Leibniz used these two terms in the 

tradition of expressions that appeared in Apollonius.   
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 It should also be noted here that all of these functions of a point, 

� 

P , on a 

given curve were defined without reference to any particular unit of measurement.  

They are line segments.  Leibniz of course, like Descartes, wanted to introduce 

quantification, and analyze the properties of curves algebraically, but since the 

definition of the functions is geometric, he could postpone the choice of a unit until 

a convenient one could be found with respect to particular properties of the curve 

at hand.  Many illustrations of the advantage of this will be presented in latter 

discussions (e.g. Sections 2.4 and 2.12).  
 Since angles 

� 

!TPN , 

� 

!POT , and 

� 

!PON  are all right angles, the triangles 

� 

!TOP , 

� 

!PON , and 

� 

!TPN  are all similar.  This configuration will be familiar to 

geometers as the construction of a geometric mean between 

� 

ON and

� 

OT , the mean 

being 

� 

OP  (i.e. the circle having diameter 

� 

TN will pass through

� 

P ).  We have 

already seen how Apollonius employed such a configuration but more examples 

shall soon emerge. 

   
    Figure 2.3b 
 

 Inspired by the work of Pascal, Leibniz saw a fourth triangle which was 

similar to the three mentioned above (Child, 1920; Arnol'd, 1990; Edwards, 1979).  

This was the infinitesimal, or characteristic triangle (see figure 2.3b), used by 

Pascal to integrate powers of the sin curve (see section 2.14).  Leibniz viewed a 

geometric curve as made up of infinitely small line segments which each have a 

particular direction.  He perceived the utility of this concept in Pascal's work, and 

it became one of the primary notions in his development of a system of notation 
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for calculus.  Although many modern formal mathematicians avoid this 

conception, it is still used as an important conceptual device by engineers.  Figure 

2.3b still appears in calculus books because it conveys an important meaning, 

especially to those who use calculus for the analysis of physical or mechanical 

actions.     

 Leibniz saw great significance in the triangles of Figure 2.3a because they 

were large and visible yet similar to the unseen characteristic triangle.  This 

finding of large triangles which are similar to infinitesimal ones is a theme that 

runs through many of the most important works of Leibniz (Childs,1920; Edwards, 

1979) and we shall investigate several examples in detail (e.g. Sections 2.4 and 

2.14).  From Figures 2.3a and 2.3b, the similarity relations tell us that: 

� 

dy

dx
=
PO

OT
=
ON

PO
.  Leibniz considered ratios like this, as well, to be functions of the 

point 

� 

P  along the curve.  
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2.4  Drawing Parabolas Using the Focus / Directrix Method  

 

 Let us look at how this system of Leibniz works in the case of the parabola.  

We must first have a way to draw a parabola.  Everything begins with the 

construction of a curve.  Figure 2.4a shows a linkage which will draw parabolic 

curves (Schooten, 1657, p.357).  This figure comes from the work of Franz van 

Schooten (1615 - 1660) whose extensive commentaries on Descartes' Geometry were 

widely read in the seventeenth century.  Because his works supplied many of the 

details omitted by Descartes, they were more popular than the Geometry  itself 

(Van Maanen, 1992). 

 The curve drawing device in Figure 2.4a comes from a set of commentaries 

on Apollonius by van Schooten (1657).  It is built entirely from rigid, hinged and 

slotted rods.  Such mechanical devices are referred to as linkages.  Such devices 

can be built to draw any algebraic curve (Artobolevskii, 1964).   Book 4 of van 

Schooten's work is entirely dedicated to linkages which draw conic sections 

(subsequent sections will display more figures from this work).  My analysis of 

this linkage will take place within the framework of the functional system of 

Leibniz which emerged in the 1690's.  I will also employ one observation from the 

beginning of the next century that comes from  the early work of L. Euler (the 

greatest popularizer of the work of Leibniz).  The curve drawing devices of van 

Schooten and others were carefully studied by mathematicians in the seventeenth 

century, including Leibniz. This example will illustrate the interaction between 

grounded activity and the systematic inquiry that followed. 

 Van Schooten's Book 4 (1657) has the title Sive de Organica Conicarum  

Sectionum in Plano Descriptione .  Loosely translated this is Organs for the description 

of conic sections in the plane.   Throughout the seventeenth century mechanical 
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devices, such as the one in Figure 2.4a are described as "organic."  Section 2.11 will 

look at Newton's tract on the organic construction of curves (1968).  The word 

"organic" comes from the Latin word "organ" which refers to an instrument or 

device for a specific purpose, as in the musical instrument the "organ."  The 

mechanical world view that was expounded in the seventeenth century scientific 

revolution extended the use of this word to parts of living bodies which were seen 

as machines for specific purposes.  This led to our modern use of the word 

"organic" which now carries quite a different connotation except, perhaps, to those 

Cartesian scientists who still want to view the world as entirely mechanical 

(Merchant, 1980).     

       
    Figure 2.4a 
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 The apparatus in Figure 2.4a constructs the parabola from the familiar 

focus/directrix definition.  That is, the parabola is the set of point equidistant from 

a point and a line.  The fixed ruler 

� 

GE  is the directrix and the point 

� 

B is the focus.  

Four equal length links create a movable rhombus, 

� 

BFGH , pinned down at 

� 

B,  

which guarantees that 

� 

FH  will always be the perpendicular bisector of 

� 

BG , as 

� 

G  

moves along the directrix 

� 

GE . 

� 

GI  is a movable ruler which is always 

perpendicular to the directrix 

� 

GE .  The point 

� 

D is the intersection of 

� 

FH  and 

� 

GI , 

as the point 

� 

G  moves along directrix.   Hence at all positions 

� 

BD=GD , and hence 

� 

D traces a parabola with focus 

� 

B and directrix 

� 

GE .  The motion of 

� 

G  along the 

fixed horizontal line "directs" the drawing of the curve, hence the term "directrix." 

 This construction can be simulated on a computer using the software 

Geometer's Sketchpad.  This software allows one to define a perpendicular bisector 

so the rhombus becomes unnecessary.  One can either drag a point along the 

directrix or have the computer animate such a motion.  Figure 2.4b was made 

using this software.  The point 

� 

F  is the focus, and the point 

� 

S  is moving along the 

directrix. 

� 

BP  is the perpendicular bisector of 

� 

FS , 

� 

SP is always perpendicular to the 

directrix, and the intersection point 

� 

P  traces a parabola.  
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   Figure 2.4b 
 

 One consequence of this construction that is immediately apparent to the 

eye is that at each point, 

� 

BP  is the tangent line to the curve at 

� 

P .  Curves can often 

be drawn by constructing a series of tangents to the curve.  Such methods are 

sometimes called "envelope" constructions.  This can also be done using strings or 

paper foldings (Row, 1966; Gardner, 1989).  In order to fold a parabola as in Figure 

2.4b, let one edge of a sheet of paper be the directrix and mark any point as the 

focus.  Make a series of folds each of which brings some point on the directrix onto 

the focus.  These folds will then be the perpendicular bisectors of the segments 

between these pairs of points and each one will be a tangent to the parabola.  A 

series of these folds will outline the parabola.  Using waxed paper will produce 

nicely visible folds.   

 In Figure 2.4c, I display the functions of Leibniz using the axis of symmetry 

of the parabola as the axis for abscissas and the vertex, 

� 

A , as a starting point.  Since 

the tangent line is part of the construction this can be readily accomplished with 
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Geometer's Sketchpad.  It is impossible to convey the feel of this moving construction 

on paper, but Figure 2.4c shows the six functions of Leibniz for two different 

positions of 

� 

P .  The focus and directrix have been hidden in these figures so that 

one can concentrate on how the "Leibniz configuration" changes. 

� 

A  is the vertex of 

the parabola and 

� 

B is same as in Figure 2.4b.  The other labels are consistent with 

functional definitions given in Figure 2.3a. 
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   Figure 2.4c 
 

 What can be seen by watching the six functions in this dynamic setting?  

Perhaps it is not so easily seen from these static figures, but with the figure in 

motion and using color to highlight the six functions, two invariances become 

readily apparent.  The first that most people notice is that the subnormal, 

� 

ON , has 

constant length.  The second is that the vertex, 

� 

A , is always the midpoint of the 

subtangent, 

� 

OT , for points 

� 

O  and 

� 

T  can be seen to approach and recede from  

point 

� 

A   symmetrically.  These two invariances can be deduced from the geometry 

of the construction, but of greater significance is that they can be experienced 

empirically from the action of the construction.  Geometer's Sketchpad  allows for 

confirmation of ones visual experience by turning on meters which monitor these 

lengths empirically.  Sure enough, 

� 

ON  has constant length, and the length of 

� 

AT  is 

always equal to the length of

� 

AO . 

 Postponing for a moment the geometrical proofs of these two statements, let 

us first look at what they tell us about the parabola.  In the tradition of Descartes, 
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variables are introduced after  the curve is drawn.  Let

� 

x = AO , and let 

� 

y = PO , i.e. 

� 

x  is the length of the abscissa, and 

� 

y  is the length of the ordinate.  Since triangles 

� 

!TOP  and 

� 

!PON  are similar, 

� 

PO

OT
=
ON

PO
.  Since 

� 

A  is the midpoint of 

� 

OT , this 

becomes 

� 

y

2x
=
ON

y
, or 

� 

 (2 !ON ) ! x =  y
2
 .  Since 

� 

ON  is constant, this yields the 

equation of the parabola.  The constant length 

� 

(2 !ON )  is known in geometry as the 

latus rectum , i.e. the rectangle formed by 

� 

x  and the latus rectum is always equal in 

area to the square on 

� 

y .  Being still free to choose a unit, one could choose 

� 

ON =
1

2
.  

The equation then becomes 

� 

x = y
2. 

 Using the similarity between the characteristic triangle and triangle TOP, 

one obtains: 

� 

dx

dy
=
OT

PO
=
2x

y
= 2y .  Hence both the equation and the derivative can 

be found from considering the invariant properties of Leibniz's configuration 

under the actions which constructed the curve.   

 The choice of 

� 

ON =
1

2
 gave the equation and derivative of the parabola in 

their best known form, but this is perhaps a little artificial from the geometric 

standpoint.  The subnormal 

� 

ON  is the primary invariant of this curve-drawing 

action and can be seen as the natural choice of a unit for this curve.  As it turns out, 

the subnormal 

� 

ON  is always equal to the distance between the focus and the 

directrix of the parabola.  Thus it is a natural unit.  Using the subnormal as a unit, 

the equation of the parabola becomes 

� 

x =
y
2

2
, i.e. the common integral form of the 

parabola as the accumulated area under the line 

� 

x = y .   It is in this form that the 

parabola most often appears in the table interpolations of John Wallis and Isaac 

Newton (Dennis & Confrey, 1993). 
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    Figure 2.4d 
 

 One way to prove that the subnormal is always constant is to show that it 

always equals the distance between the focus and the directrix.  Looking at Figure 

2.4d, one sees that 

� 

SF  and 

� 

PN  are both perpendicular to 

� 

BP , so triangles 

� 

!SCF  

and 

� 

!PON  are congruent; hence 

� 

ON =CF . 

 In order to prove that the vertex 

� 

A  is always the midpoint of the subtangent 

� 

OT , one can establish that triangles 

� 

!TBA  and 

� 

!PBK  are congruent.  They are 

clearly similar, but since 

� 

B is the midpoint of 

� 

SF  it is also the midpoint of 

� 

AK , so 

they are congruent.  Hence 

� 

TA =KP = AO . 

 Lastly, one might ask: how can we be sure that the line 

� 

BP  is always 

tangent to the parabola?  That is to say, how can one be sure that each instance of 

the line 

� 

BP  intersects the parabola in only one point?  Let 

� 

Q ! P  be a point on 

� 

BP , 

and let 

� 

R be the foot of the perpendicular from 

� 

Q  to the directrix 

� 

CS .  Since 

� 

R is 

the closest point to 

� 

Q  on the directrix, 

� 

QR < QS .  Since 

� 

BP  is the perpendicular 

bisector of 

� 

SF , 

� 

QS =QF .  Hence 

� 

QR < QF  and 

� 

Q  cannot be on the parabola, being 

closer to the directrix than to the focus.  Thus all such points 

� 

Q  lie on the same side 
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of the parabola.16  One could also check the tangency of 

� 

BP  analytically by writing 

the equation of the parabola and the line 

� 

BP  using the same coordinate system, 

and then solving the two equations simultaneously arriving at a quadratic 

equation with one repeated root.  This is the method that Descartes developed for 

finding tangents, i.e. tangency occurs when repeated roots appear in the 

simultaneous solutions.    

 Having a method for drawing parabolas with their tangents at any point 

allows one to empirically investigate more of the properties of the curve 

mentioned by Apollonius.  Draw a diameter of a parabola (i.e. any line parallel to 

the axis of symmetry) through some point 

� 

A  on the curve (see Figure 2.4e).  Using 

the tangent at 

� 

A , construct an ordinate 

� 

OP  with respect to this diameter (i.e. a line 

parallel to the tangent at 

� 

A ).  Check that 

� 

OP =O ! P .  Now draw the tangents at 

� 

P  

and 

� 

! P  and discover that they both intersect the diameter at the same point 

� 

T , and 

that 

� 

TA = AO .  Using various points 

� 

P  on the curve one discovers that this is 

always true.  The property of the subtangent used in our previous discussion 

generalizes to any diameter and its ordinates.  Any subtangent 

� 

OT  is always 

bisected by its vertex 

� 

A   even in the skewed coordinates of any Apollonian 

diameter.  
         

                                                 
16  This argument for tangency is similar to those made by Apollonius.  A reader might ask what 
definition of "tangent" is used in Apollonius?  The answer is that he did not give a precise 
definition.  He used the phrase "a line that touches a curve" in contrast to the phrase "a line that 
cuts a curve."  A proof of tangency in Apollonius asserts that a line intersects a curve in only one 
point, and stays on the same side of the curve.   
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    Figure 2.4e 
 

 In our previous discussion we used the bisected subtangents on the axis to 

find the equation of the parabola.  In the more general case shown in Figure 2.4e, 

Apollonius made the argument in the other direction, deducing the general 

subtangent property from his knowledge of the ratios which imply the equation.  

It is this going back and forth between geometry and algebra that I find most 

suggestive for curriculum reform.  From the sectioning of an oblique cone parallel 

to its side Apollonius knows that 

� 

AO  is proportional to the square on 

� 

OP .  In Book 

1, Propositions 33 &35, he shows how this proportionality implies that 

� 

TA = AO , 

and that constructing 

� 

T  such that  

� 

TA = AO  is another way to find the tangents at 

� 

P  and 

� 

! P  from the curve.   The arguments are simple but require a sharp sense of 

ratio.  He used the theorem from Euclid that if a line segment is cut into two pieces 
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which are then used as the sides of a rectangle, the largest area that the rectangle 

can have comes from bisection (Apollonius, 1952). 
 

  
    Figure 2.4f 
 

  As for the constant subnormal of a parabola along its axis of symmetry, 

here is my own generalization of this property to any Apollonian diameter done 

on Geometer's Sketchpad.  Construct at each point 

� 

P , a triangle 

� 

!PON  which is 

similar to 

� 

!TOP  (see Figure 2.4f).  Although point 

� 

N  is not on the diameter 

� 

AO , as 

� 

P  moves along the parabola, 

� 

ON  will have a constant length, and 

� 

N  will move 

along a line (dotted) parallel to 

� 

AO  and equidistant from the focus 

� 

F .  Since the 

tangent at 

� 

A  bisects angle 

� 

!CAF , 

� 

ON  will always be parallel to

� 

AF , and twice as 

long as 

� 

AF =CA , since triangle 

� 

!AFS  is similar to 

� 

!ONP  and exactly one half as 

large.  Although this configuration does not use right triangles as in the Leibniz 

configuration, the similarity still guarantees that the segment 

� 

OP  is the geometric 

mean of 

� 

OT  and 

� 

ON , just as 

� 

AS  is the geometric mean of 

� 

AT  and 

� 

AF .  A 

fascinating special case occurs when 

� 

P  is positioned so that 

� 

PO  passes through the 

focus 

� 

F .  In that case 

� 

T  will fall on the directrix at 

� 

C , and 

� 

OT = PO =ON , i.e. this 
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geometric sequence is constant.  The geometric sequence is increasing on one side 

of this special case, and decreasing on the other.  

 Since triangles 

� 

!TOP  and 

� 

!PON  are similar, one obtains the equation in 

this skewed coordinate system as before from: 

� 

PO

OT
=
ON

PO
, or 

� 

y

2x
=
ON

y
, or 

� 

 (2 !ON ) ! x =  y
2
 . The latus rectum in this coordinate system is still 

� 

2 !ON .  As with 

the generalized bisection property of the subtangent, one can either deduce these 

properties directly from the geometry and use them to obtain the generalized 

equation, or, vice versa, deduce the these geometric invariances from the 

generalized equation obtained from the oblique conic section. 

 These two invariant properties of the parabola were never mentioned directly (so 

far as I know) in the published work of Leibniz.  The fact that the vertex is the midpoint 

of the subtangent was demonstrated by Apollonius (1952).  The fact that the subnormal 

is constant is credited to L. Euler, who expanded and popularized the ideas of Leibniz 

(Coolidge, 1968).  They both appear in Book 2 of Euler's most famous textbook, the 

Introduction to Analysis of the Infinite  (1990).  This book, first published in 1748, was the 

first modern precalculus textbook and, along with its sequels on differential and 

integral calculus, did much to standardize curriculum and notation.  Nearly all of the 

topics in our modern precalculus books are contained in Euler's book, but what is 

missing from our modern treatments is the bold empirical spirit of Euler's 

investigations, as well as most of his more advanced geometry and infinite series.  Euler 

says in the preface to his text that he presents many questions which can be more 

quickly resolved using calculus.  He insists, however, that students are rushing into 

calculus too rapidly, and that they will become confused because they lack the 

experiential basis (both geometric and algebraic) upon which calculus is built. 

 Already this one parabola example demonstrates how much can found 

using only basic geometry combined with empirical investigation.  By letting the 
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geometry move, one creates the situation where equations evolve naturally from 

geometry and vise versa.  Too often in our schools we find our geometry 

curriculum static and isolated from other topics, especially algebra.  Parabolas, for 

example, are generally not discussed in geometry, but only introduced as the 

graphs of quadratic polynomials.  Two-column geometry proofs provide a shadow 

of Euclid, but they can not provide the dynamic experience that leads to an 

understanding of the relations of curves to equations, functions and calculus. 
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2.5  Drawing Ellipses from their Foci  

   In the previous sections I have presented two dynamic ways to draw parabolas, 

but how can one be sure that the two devices are really drawing the same family of 

curves?  The ratios between the abscissas and ordinates provided the answers in the 

previous case and connected these devices to the parallel slice of the cone as well.  

Parabolas are all similar to each other (Apollonius, 1952), so they are all the same except 

for possible variations in one parameter (the latus rectum).  As I mentioned in section 

2.2, two parameters are at play in the elliptic case.  An interesting introduction to 

ellipses might lie in a student discussion of how to tell when two ellipses are similar.  In 

Section 3.6 a student brings up this issue on his own.    

 In this section I shall present the first examples of transformations on the curve 

drawing devices themselves.  Three different devices for drawing ellipses will be 

presented, along with demonstrations that all three devices draw the same family of 

curves, via direct observations of the devices.  No ratio properties or algebraic equations 

will be used.  I shall show sequentially how to see each device acting within another 

device, and conclude directly that certain points in different linkages will have the same 
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paths of motion.  Take out a link here, replace it with another one there.  I will use the 

direct tinkering approach that is at the heart of van Schooten's work (1657).22 

 I begin with the one curve drawing device (other than the compass) that still 

remains in our schools.  That is the loop of string over two tacks, which draws an ellipse 

from its two foci by holding constant the sum of the two distances to the foci.  Other 

than the circle, an elliptic equation derived from this device is usually the only instance, 

in our secondary curriculum of an equation being derived from a curve drawing action.  

Figure 2.5a shows van Schooten's illustration of such a device, with the foci tacked at 

� 

H  

and 

� 

I  (1657, p. 326). 
 

   
               Figure 2.5a 
 

 The standard equation of an ellipse can be derived from this device using the 

Pythagorean theorem (i.e. the distance formula).  This method gives an elliptic equation 

only with respect to the axis through the foci, and does not readily generalize that 

equation to an arbitrary diameter, as did the  Apollonian approach via geometric means 

from the cone (see Section 2.2).  Apollonius did prove (1952, Book 3, Prop. 52) that there 

                                                 
22   This approach provides an example of a systematic inquiry taking place within a set of 
grounded activities with almost  no reference to any system of codification (Comment by Jere 
Confrey).  
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are two points within an ellipse such the sum of the distances to any point on the curve 

is constant (and equal to the length of the axis, 

� 

HE + IE = LK ), but he did not give any 

special name to those points.  
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     Figure 2.5b  
 

 Figure 2.5b shows two positions of a cross linked elliptic device (Schooten, 1657, 

p. 340, 341).  As before the links are tacked down to the table at the points 

� 

H  and 

� 

I .  

The requirements here are that the link 

� 

FG  be equal in length to the distance between 
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the foci 

� 

HI , and that the other two links, 

� 

HG  and 

� 

IF , both be larger than 

� 

HI , and equal 

to each other.  I have included a double figure of this device to give some sense of its 

motion, since it was at first mysterious to me.  While talking about this device one 

evening with a geometrically astute carpenter, he said that he felt sure that such a 

device would be rigid, since cross bracing was the standard technique in carpentry to 

achieve rigidity.  We had to tack some scrap lumber together before he would believe 

that any motion was possible with such a device.  A version of this  device can easily be 

made from cardboard and thumb tacks (pointing down at 

� 

H  and 

� 

I , and up at 

� 

F  and 

� 

G ).  It is worthwhile experiencing its motion. 

 From the requirements of the device it can be seen that triangles 

� 

!HEI  and 

� 

!FEG  are always congruent at every position.  Thus any point, 

� 

E , on the curve is 

equidistant from 

� 

H  and 

� 

F , and also from 

� 

I  and 

� 

G .  Hence the sum of the distances 

from 

� 

E  to the foci is constant, 

� 

HE + IE = HG = IF .  This device draws the same curves 

as the loop of string, and the equal links 

� 

HG  and 

� 

FI  are both equal to the length of the 

major axis 

� 

LK .  In general the study of three links which connect two stationary points 

is of great interest in mechanical engineering and robotics.  If one violates some of the 

equalities in the requirements for this device, interesting families of fourth, sixth, or 

even eighth degree curves result (see Artobelevskii, 1964). 

 Besides having a very different feel from the loop on string this cross linked 

device tells us more about the ellipse.  It gives us the tangent line at any point.  Van 

Schooten's two drawings (Figure 2.5b) display two ways to find the tangent at the point 

� 

E .  Either draw 

� 

EM , where 

� 

M  is the midpoint of 

� 

FH  (top of Figure 2.5b), or extend 

� 

FG  until it meets the axis at 

� 

N  and then draw 

� 

EN  (bottom of Figure 2.5b).  Either 

method will find the tangent line to an arbitrary point on the ellipse.  The symmetry of 

the lines in Figure 2.5b will yield this, but I will postpone any proof of tangency until I 

transform this device into a third elliptic device. 
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 Regardless of tangency, 

� 

EM  (or 

� 

EN )  is clearly a line of symmetry for the links in 

Figure 2.5b, that is to say triangle 

� 

!FEG  is a reflection through 

� 

EM  (or 

� 

EN ) of triangle 

� 

!HEI .  Hence 

� 

EM  (or 

� 

EN ) bisects line segment 

� 

IG  (not drawn in Figure 2.5b).  Van 

Schooten used this property to construct a new device which draws the curve by 

finding the point 

� 

E  as the intersection of 

� 

HG  with the perpendicular bisector of 

� 

IG .  

This new device constructs the ellipse as the set of points equidistant from a point, 

� 

I , 

and a circle (i.e. the circle centered at 

� 

H , and described by 

� 

G  as the link 

� 

HG  rotates 

around 

� 

H ).  Van Schooten's drawing of this device is shown in Figure 2.5c (1657, p. 

342).  As in the parabolic device in Figure 2.4a, he used a flexible rhombus (

� 

IOGP ) as a 

way to insure that 

� 

OP  will always be the perpendicular bisector of 

� 

IG , and hence 

� 

IE = EG .  The link 

� 

HG  is the same as in Figure 2.5b, but all the other links are new.  The 

four links 

� 

IO, 

� 

OG , 

� 

GP , and 

� 

PI  can be any length as long as they are all equal.  Their 

length does not affect the curve, which is completely determined by 

� 

HI  (focal distance) 

and 

� 

HG  (major axis).  This device still draws an ellipse because 

� 

HE + IE = HG  still 

holds.  
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    Figure 2.5c 
 

 Unlike the device in Figure 2.5b, this new physical device is not so easily 

constructed, and its motion is cumbersome.  This new device, however, is much easier 

to simulate in Geometer's Sketchpad  than the previous one.  Start with a point 

� 

G  that 

moves on a circle centered at 

� 

H  (see Figure 2.5d).  Choose any point, 

� 

I , in the interior of 

the circle and connect 

� 

I  to 

� 

G .   One can dispense with the rhombus by directly defining 

the perpendicular bisector of 

� 

IG  (

� 

A  is the midpoint of 

� 

IG ).  As the point 

� 

G  rotates 

around the circle, trace the locus, 

� 

E , of the intersection of the radius 

� 

HG  with the 

perpendicular bisector of 

� 

IG .  This point, 

� 

E , traces an ellipse which is the set of points 

equidistant from the circle and the point 

� 

I .  The radius of the circle is the length of the 

major axis.  The closer the point, 

� 

I , gets to the circle the more elongated the ellipse 

becomes. 
 

         
       Figure 2.5d 
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 Like the construction of the parabola in Section 2.4, this is an envelope 

construction.  That is to say 

� 

AE  is always tangent to the curve at 

� 

E .  The proof of 

tangency that was given for the parabola remains valid here.  Let 

� 

Q ! E  be a point 

on 

� 

AE , hence 

� 

QG =QI .  But since 

� 

Q  is not on the radius 

� 

HG , the distance from 

� 

Q  

to the circle is less than 

� 

QG .  Hence the line 

� 

AE  intersects the ellipse only at 

� 

E , 

and all points 

� 

Q ! E  on the line 

� 

AE  must be outside the ellipse.   

 Like the parabolic envelope construction of Section 2.4, this curve can also 

be constructed by paper folding.  Cut out a circular piece of paper and mark any 

point, 

� 

I , not equal to the center.  By folding points on the edge of the circle so that 

they fall on 

� 

I , one constructs the perpendicular bisectors 

� 

AE   which are tangent to 

the ellipse.  These folds will outline the ellipse (Row, 1966; Gardner, 1989). 

 The equation of this ellipse with respect to the axis

� 

HI , is known from the 

loop of string construction from which this construction evolved ( i.e. 

� 

HE + IE = HG ).  From my comments on geometric means in section 2.2, this 

equation connects these three devices back to the definition of the ellipse as a conic 

section.  There is also a beautiful and direct geometric proof of this connection 

given in the nineteenth century by Dandelin, the so called "ice cream cone proof" 

(see Apostol, 1961). 

 Seeing the ellipse as the set of points equidistant from a point and a circle 

provides another unified way to see all conic sections.  In the next section I shall 

show that the hyperbola can be seen this way as well, simply by placing the focus, 

� 

I , outside the circle.  The parabola is then seen as the border between these two 

cases where the directrix is seen as a circle of infinite radius, thus sending the other 

focus of the parabola (the center of the circle) to infinity.  In the seventeenth 

century some mathematicians adopted this use of infinity to unify the conics (e.g. 

Pascal and Newton), while others followed Apollonius  more closely and avoided 

it (e.g. Descartes and Van Schooten).   
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 Having a direct way to draw tangents to ellipses allows one to empirically 

investigate a variety of their properties.  The theorems of Apollonius on ordinate 

directions and on conjugate diameters can all be investigated directly (Figure 2.2e 

was made this way).  If one uses the distance meters, and tabulations that are 

available on Geometer's Sketchpad, one can explore the standard equations of the 

ellipse along different diameters using oblique coordinates.  Such data could then 

be further explored and analyzed by placing it in a spreadsheet or table setting like 

the one available in the software Function Probe, where a variety of rate and 

accumulation properties could be explored in a precalculus setting based on a 

direct empirical investigation of a geometric action. 

 Considering again the "functions of a curve" as defined by Leibniz, let us 

look at the ellipse.  In the previous section, we saw that in the parabolic case, the 

vertex of any diameter was always the midpoint of the subtangent (i.e. the 

subtangent was always twice the abscissa).  Can any such statement be made 

about the ellipse?  Looking at some examples using the major axis, one can begin 

comparing the lengths of abscissas with corresponding subtangents.  One finds 

that for ellipse, the vertex is always closer to the foot of the ordinate than it is to the 

foot of the tangent (see Figure 2.5e where 

� 

OL < TL ).  This says, in a very physical 

way, that motion along an ellipse away from a vertex 

� 

L  curves inward towards the 

axis more sharply than does parabolic motion.    
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    Figure 2.5e 
 

 There is an exact invariance here, and Apollonius considered it in Book 2 of 

The Conics  (1952).  The table in Figure 2.5e shows the lengths of four segments in 

inches together with two ratios, all for three different positions  of 

� 

E  along the 

curve.  Geometer's Sketchpad  will display meters which continuously monitor 

lengths, and will automatically tabulate the readings of its meters in a table for 

different positions of a configuration.  The ellipse and its tangents are being 

constructed as in Figure 2.5d with some of the lines and circles from the 

construction being hidden. 

 One sees in the table that 

� 

T  and 

� 

O  have the same ratios of distance to the 

vertices 

� 

L  and 

� 

K  at the ends of the axis. 

� 

T  is said to be the "harmonic conjugate" of 

� 

O  because 

� 

T  divides the major axis 

� 

LK  externally in the same ratio as 

� 

O  divides 

the axis internally.  Strings of length 

� 

TL  and 

� 

TK  would play the same musical 

interval as strings of length 

� 

OL  and 

� 

OK  (given equal tension).  Just as in the 
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parabolic case of bisected subtangents, this harmonic property is true for any 

diameter and its ordinate direction.  Since the equations in all these systems are 

same (up to proportional constants) algebraically this must be the case.  It is 

fascinating to investigate this harmonic property in these oblique cases, but I leave 

that investigation for the reader. 

 One important use of ellipses is as a model for the orbits of planets.  Most 

students are told in high school science classes that the planets follow elliptic orbits 

around the sun (Kepler's first law), and usually they are also told that a line 

between a planet and the sun will sweep out equal areas in equal times (Kepler's 

second law).  These laws are rarely discussed in secondary mathematics classes.  

Even in calculus classes, Newton's conclusions that such motions are the result of a 

Force inversely proportional to the square of the distance from the sun are rarely 

discussed.  Newton is popularly believed to have invented calculus, although what 

appears in calculus books is the work of Leibniz and his followers (e.g. Euler and 

Bernoulli).  In fact, what appears in Newton's Principia  is a lot of geometry that 

makes heavy use of the work of Apollonius, particularly conjugate diameters and 

their relations to the tangents of conic sections. 

 The previous construction of the ellipse contains a very direct way to see the 

velocity vector of a planet in an elliptic orbit.  Let the point 

� 

E  represent a planet 

orbiting around the sun at point 

� 

I , where the orbit is defined as the set of points 

equidistant from 

� 

I  and a circle centered at the other focus 

� 

H  (as before).  We 

found 

� 

E  by intersecting the perpendicular bisector of 

� 

IG  with the radius 

� 

HG  as G 

moved around the circle.  Now extend 

� 

IG  back in the other direction until it meets 

the circle at another point 

� 

Q  (see Figure 2.5f).  This construction contains the 

tangent to the ellipse at 

� 

E ; the question is: what is the magnitude of the velocity 

vector at 

� 

E ?  It turns out that, using Kepler's model, that magnitude is 

proportional to the length of 

� 

IQ (the proportionality constant depends on one's 
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choice of a unit for time).  In Figures 2.5f and 2.5g, I have made the vector 

� 

ET  the 

same length as 

� 

IQ.  These figures give a vivid sense of how a planet speeds up 

when it is closer to the sun and slows way down when in the more distant part of 

its orbit.  These figures are two moments of an animation made on Geometer's 

Sketchpad. 
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        Figure 2.5f 



    

David Dennis Curve Drawing Devices http://www.quadrivium.info  
 

91 

   
    Figure 2.5g 
 

 For those who wish to work out on their own why a velocity vector 

proportional to 

� 

IQ will produce orbital motion in accord with Kepler's second law, 

I offer the following helpful thought from Euclid (Book 3, Prop. 35).  Since the 

point 

� 

I  is fixed, the product of 

� 

IQ and 

� 

IG  will remain constant as 

� 

G  goes around 

the circle.  For those who wish to see more details on the relations between this 

curve drawing device and planetary orbits, see the recent article by Andrew 

Lenard (1994).  Lenard provides details and goes on to show how to geometrically 

construct the acceleration vector, and derive Newton's laws geometrically.  It 
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should be pointed out that Newton did not use this particular construction in his 

Principia (1952), but he certainly studied van Schooten carefully, and wrote 

commentaries on his work at the very start of his career (Newton, 1967).  In his 

formal presentation of universal gravitation, Newton chose instead a more 

conservative route and stuck closely to Apollonius. 

 The early nineteenth century, Irish mathematician Sir William Hamilton 

seems to have been the first to have pointed out that if the velocity vectors of a 

planet's orbit are all placed with their feet at the sun, then their heads will trace out 

a circle (not centered at the sun).  He called this circle the hodograph (from the 

Greek hodos for road or path) (Lenard, 1994).  This hodograph is the circle in 

Figures 2.5f and 2.5g.  These curve drawing devices often provide a strong sense of 

a parameter of motion which guides the construction of curves.  In the previous 

example, it is this hodographic circle, which is geometrically related to the time 

parameter in an orbiting planet.  Newton used the term "directrix" generally, to 

indicate any curve which directs the construction of another curve (see Section 

2.11).     

 As a curve, the ellipse is easily drawn and is fundamental in a variety of 

important scientific investigations especially astronomy, yet its discussion in the 

secondary mathematics curriculum is scant.  The empiricism of Kepler and the 

systematic inquiries of Newton have a mythological status in our society, and yet 

at the crux of their fame lies elliptic orbits which are rarely discussed even in 

calculus classes.  I think this partly due to the fact that ellipses are curves but they 

are not "functions" according to the modern definition.  The discussion of elliptic 

orbits is formally and algebraically inconvenient.  The usual approach to geometry 

is as an exercise in logic that never even begins to discuss curves and tangents.  It 

is my hope that this section provides some strong indications for curricular reform 

using dynamic geometry as a means to facilitate: first, activities in which students 
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could explore ellipses, and second, discussions of orbits which could make the 

investigations of Kepler and Newton more than techno-sacred iconography. 
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2.6  Drawing Hyperbolas from their Foci  

 This section will parallel the previous one to such an extent that I will say 

less and try to let the figures speak for themselves.  Every elliptic device and 

construction from the previous section can be altered or turned inside out, so that 

it produces a hyperbola.  The properties and demonstrations almost entirely 

parallel what was given in Section 2.5.  The only differences come from the fact 

that hyperbolas have two branches and a pair of asymptotes.  For example, as a 

point on the curve approaches an asymptote, the angle between the diameter 

through that point and the corresponding ordinate direction (the conjugate 

diameter) becomes very small (or close to 

� 

180° ).  The asymptotes are lines through 

the center but they are not diameters since at that position the ordinate direction 

collapses onto the same line.  I will discuss coordinatizing a hyperbola along one 

or both of its asymptotes in Section 2.7.  This arises naturally through the use of an 

entirely different curve drawing device that gives no indication of the foci. 

 Section 2.5 began with a loop of string over two tacks which held constant 

the sum of the two focal distances.  Here I begin with a ruler hinged at one focus, 

F, and a string tied to a tack at the other focus, 

� 

C .  See Figure 2.6a taken from Van 

Schooten (1657, p. 338).  The string is tied to the end of the ruler at point 

� 

N , and 

the pencil is used to hold the string against the ruler.  This guarantees that as the 

pencil moves along the curve, its distances from points 

� 

C  and 

� 

F  will be increasing 

by the same amounts.  Thus at all points 

� 

P  along the curve there is a constant 

difference between the distances 

� 

PF  and 

� 

PC , that difference being 

� 

EK .  Thus, 

� 

PF - PC = EK  for all points on the left branch, where 

� 

EK  is determined by the 

length of the string.  
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    Figure 2.6a 
 

 Following the plan of section 2.5 we next set up three links between the two 

tacks at the foci (

� 

C  and 

� 

F ) such that the middle one is equal to 

� 

CF  and the other 

two are arbitrary but equal to each other.  That is to say in Figures 2.6b, 2.6c and 

2.6d (Schooten, 1657, p.345-348), 

� 

DG =CF , and 

� 

CD = FG .  This time, however, 

instead of crossing the links 

� 

CD  and 

� 

FG  as in figure 2.5b, one points them in 

opposite directions.  The curve is still being drawn as the intersection of lines 

� 

CD  

and 

� 

FG  but these lines must be extended in order to meet at the pencil point P.  

This apparatus maintains a constant difference between 

� 

PF  and 

� 

PC , i.e. 

� 

PF - PC = FG =CD .  This can be seen, as before, through symmetry or through the 

congruence of triangles 

� 

!PCF  and 

� 

!PDG  (one of the triangles is made by 

connecting 

� 

P  to the foci, and the other by connecting 

� 

P  to the ends of the middle 

link).  This constant difference is also equal to the axis 

� 

EK .  As in the elliptic case if 

one draws the line from 

� 

P  to the midpoint, 

� 

H , of 

� 

CG , this line is tangent to the 

curve at 

� 

P .  The symmetry of the picture is identical with Figure 2.5b.  
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    Figure 2.6b 
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    Figure 2.6c 
 

 Figure 2.6c (Schooten, 1657, p. 347) show this same device drawing the right 

branch of the curve.  In this figure one sees that the point 

� 

B where the link 

� 

GD  

intersects the axis 

� 

CF  will also produce the tangent if connected with the point 

� 

P  

on the curve.  
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    Figure 2.6d 
 

 Figure 2.6d shows this device in the asymptotic position where 

� 

CD  and 

� 

FG  

are parallel.  Keeping in mind that 

� 

DG =CF  one sees that this is the only position 

where the link 

� 

DG  will pass through 

� 

A , the center of the curve.   

 A proof of the tangency properties can be given which is identical with the 

arguments made in the elliptic and hyperbolic cases.  As before, it can be seen from 

symmetry, or by transforming this device into one which draws the hyperbola as 

the set of point equidistant from a circle and point outside it.  Once again van 

Schooten accomplished this through the use of a hinged rhombus (

� 

LDMF ) which 

constructed the perpendicular bisector of 

� 

FD .  He then drew the curve as the 

intersection of this perpendicular bisector (

� 

LM ) and an extended radius (

� 

CD ) of 

the circle centered at the other focus (

� 

C ).  See Figures 2.6e, 2.6f, and 2.6g for three 

positions of this device (Schooten, 1657, p. 349 -352).  As before this is an envelope 

construction where the 

� 

LM  is always a tangent to the hyperbola.  This 
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construction can also be accomplished through paper folding by repeatedly 

folding points on circle onto a fixed point outside the circle.  These foldings will 

outline the curve with tangents (Row, 1966; Gardner, 1989). 
 

   
    Figure 2.6e 
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    Figure 2.6f 
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    Figure 2.6g 
 

 Figure 2.6g shows the device in the asymptotic position.  The lines 

� 

CD  and 

� 

LM  do not meet, so no point on the curve is defined, but in this position 

� 

LM  is the 

asymptote.  A slight movement of the device in either direction will produce a 

point on the upper right or the lower left.  This gives a strong sensation of 

connectedness between the branches of this curve.  Descartes and other in the 

seventeenth century considered the hyperbola to be continuous because it can be 

drawn with one continuous action (Lenoir, 1979).  This sense of continuity is not 

the same as adopting a projective view which sees the curve as connected at 

infinity, but is tied, instead, directly to an experience with a physical apparatus.  In 

the seventeenth century the very term "geometer" most often referred to a person 
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who designed and constructed machines and apparatus,  such as siege engines, 

fortifications, canals, locks, bridges, etc.           

 As in the elliptic case this last, rather awkward device is actually the 

simplest of the three to animate on the computer using Geometer's Sketchpad.  In 

fact one does not have to create a new construction at all.  The elliptic one from 

Figure 2.5d becomes a hyperbolic one simply by dragging the off-center focus, 

� 

I , 

outside the circle.  I will change only the labels of the points in Figure 2.6h so that 

they are consistent with van Schooten's Figures 2.6e, 2.6f, and 2.6g.  The circle 

(hodograph) is made by the rotation of the link 

� 

CD  around 

� 

C , and one then traces 

the locus (

� 

P ) of the intersection of the perpendicular bisector of 

� 

FD  with the 

extended radius 

� 

CD .  The perpendicular bisector 

� 

AP  is the tangent line at 

� 

P . 
 

 
    Figure 2.6h 
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 If the point 

� 

P  is thought of as a planet in a hyperbolic orbit around the 

point 

� 

F , once again the figure shows us not only the direction, but also the 

magnitude of its velocity vector.  That magnitude will always be proportional to 

the length of the segment

� 

FR , where the proportionality constant depends on the 

unit of time that is chosen.  The geometry in the figure is equivalent to Kepler's 

second law, which says that a line between 

� 

P  and 

� 

F  will sweep out equal areas in 

equal times (Lenard, 1994).  For those who wish to explore this on their own the 

same Euclidean hint applies; i.e. the product, 

� 

FD !FR , remains constant as 

� 

D 

moves around the circle. 
 

  
    Figure 2.6i 
 

 The harmonic properties of the subtangent that were discussed for the 

ellipse in Section 2.5 continue to hold on the hyperbola.  Dropping an ordinate 

from 

� 

P  to the axis, we find this time that the vertex 

� 

K  is always closer to the 

intersection of the tangent line 

� 

T  than to the foot of the ordinate 

� 

O  (see Figure 2.6i, 

where 

� 

TK <OK ).  This shows, in an intuitive way, that the hyperbola opens more 
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widely than does the parabola where 

� 

TK  would equal

� 

OK .  The harmonic ratios 

reverse roles from the elliptic case, in that here 

� 

T  is between the vertices 

� 

K  and 

� 

L , 

and 

� 

O  is outside. 

� 

T  divides 

� 

KL  on the inside in the same ratio that 

� 

O  divides 

� 

KL  

on the outside. 

� 

T  and 

� 

O  are still harmonic conjugates of each other but the picture 

is inside out.  Figure 2.6i tabulates values in inches for three different positions of 

� 

P .  The first two entries were made on the right branch of the hyperbola and the 

last entry where the ratios are greater than one was made with 

� 

P  on the left 

branch. 

 Once again I wish to point out the educational possibilities here for an 

empirical investigation of many aspects of curves and their tangents using 

linkages, paper folding and a computer.  This can be done entirely with 

elementary geometry.  Formal geometric proofs of these properties can be given 

(Apollonius, 1952), but that is not what I wish to stress.  Solid intuitive experience 

with curves and tangents would make the transition to the language of analytic 

geometry and calculus so much more meaningful, since many of the initial 

statements made in these languages would be firmly grounded in a set of activities 

(Confrey, 1993a).  
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2.7  Drawing Hyperbolas from Asymptotes  

 In this section I will explore a device which comes directly from the first 

1637 edition of Descartes' Geometry  (1952).  This was one of the first curve drawing 

linkage that I ever analyzed in detail.  When I first read Descartes I could not 

believe that it worked.  I immediately built a cardboard model in order to get the 

feel of it.  I was excited by it and showed it to the other people on Prof. Confrey's 

mathematics education research project.  We co-authored a paper dedicated 

entirely to this device, and the conceptual issues that it raised concerning the 

relations between curves, coordinates, and equations (Smith, Dennis, & Confrey, 

1992).  The issues discussed in that paper remain valid and will be mentioned here 

briefly, but at that time I had not carefully read Apollonius, and so I was unaware 

of the implications of this device concerning hyperbolic tangents.  I was also 

unaware of how Descartes and his contemporaries saw their work in relation to 

Apollonius, and other classical, and Arabic geometers. 

 Descartes was concerned with bringing together and generalizing several 

mathematical directions.  First, the algebraic notation of Vieté provided a way to 

write the ratio statements of Apollonius as equations (Klein,1968).  Second, Arabic 

methods solved general cubic equations by intersecting conics, which were plotted 

point by point using ruler and compass (Joseph, 1991; Berggren, 1986).  Descartes 

(1952) saw no reason to restrict himself to ruler and compass alone if he could 

provide exact means to draw a larger variety of curves.  In the Geometry (1952) he 

solved a series of problems by intersecting various types of curves (see Section 

2.12).  These problems can all be stated as geometry problems, although  many are 

discussed algebraically.  

 Descartes provided several curve drawing constructions which can be 

progressively iterated to produce curves of higher and higher algebraic degree.  It 
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is usually mentioned in histories of mathematics that Descartes was the first to 

classify curves according to the algebraic degree of their equations.  This is not 

quite accurate.  Descartes classified curves according to pairs of algebraic degrees, 

i.e. lines and conics form his first class (he used the term "genre"), curves with third 

or fourth degree equations form his second class, etc. (1952, p. 48).  This is quite 

natural if one is working with linkages.  With most examples of linkage iteration 

that I know of, each iteration raises the degree of the curve's equation by two, with 

special cases that collapse to an odd algebraic degree.23  I shall mention several 

examples of this phenomenon in the following sections. 
 

   
    Figure 2.7a  
 

                                                 
23  This same classification by pairs of degrees is used in modern topology in the definition of "genus."  The "genus" 
of a non-singular algebraic plane curve can be thought of topologically as the number of "handles" on the curve 
when defined in complex projective space.  In complex projective space, linear and quadratic non-singular  curves 
have genus 0, and are topologically sphere-like.  Similarly, curves of degrees 3 and 4 are topologically torus-like, 
and have genus 1.  Curves of degrees 5 and 6 are topologically double-holed and have genus 2, etc.  In the real 
model, (i.e. when considering only real solutions of one real equation in 2 variables) the genus 0 curves consist of at 
most one oval when you join up the aymptotes.  The genus 1 curves will have 2 ovals, which is what you'd expect  
when cutting through a toric by a plane, etc.  (This comment was made to me by Paul Pedersen.)   
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 Figure 2.7a is taken from the original 1637 edition of Descartes' Geometry  

(1952, p. 50).  Descartes described this curve drawing device as follows (note that 

his use of the term "diameter" refers to an asymptote which is not a "diameter" in 

the Apollonian sense, although it will serve as one of the coordinate directions): 
 

Suppose the curve 

� 

EC  to be described by the intersection of the 
ruler 

� 

GL  and the rectilinear plane figure 

� 

NKL , whose side 

� 

KN  is 
produced indefinitely in the direction of 

� 

C , and which, being 
moved in the same plane in such a way that its diameter 

� 

KL  
always coincides with some part of the line 

� 

BA  (produced in both 
directions), imparts to the ruler 

� 

GL  a rotary motion about 

� 

G  (the 
ruler being hinged to the figure 

� 

CNKL  at 

� 

L ).  If I wish to find out 
to what class this curve belongs, I choose a straight line, as

� 

AB , to 
which to refer all its points, and on 

� 

AB  I choose a point 

� 

A  at 
which to begin the investigation.  I say "choose this and that," 
because we are free to choose what we will, for, while it is 
necessary to use care in the choice, in order to make the equation 
as short and simple as possible, yet no matter what line I should 
take instead of 

� 

AB  the curve would always prove to be of the 
same class, a fact easily demonstrated.  (Descartes, 1952, p.51) 

    

 Descartes went on to find the equation of the curve in Figure 2.7a as 

follows.  Introduce the variables (Descartes used the term "unknown and 

indeterminate quantities") 

� 

AB = x , 

� 

BC = y , (i.e. in modern notation 

� 

C = x,y( ) ), and 

then the constants ("known quantities") 

� 

GA = a , 

� 

KL = b , and

� 

NL = c .  Descartes 

routinely used the lower case letters 

� 

x , 

� 

y , and 

� 

z  as variables, and 

� 

a , 

� 

b , and 

� 

c  as 

constants, and our modern convention stems from his usage.  Descartes, however, 

had no convention about which variable was used horizontally, or in which 

direction (right or left) a variable was being measured (

� 

x  is measured to the left 

here).  There was, in general, no demand that 

� 

x  and 

� 

y  be measured at right angles 
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to each other.  The variables were tailored to the geometric situation.  There was a 

very hesitant use of negative values (often called "false roots"), and in most 

geometric situations they were avoided.      

 Continuing with the derivation, since the triangles 

� 

!KLN , and 

� 

!KBC  are 

similar, we have: 

� 

c

b
=

x

BK
,  hence 

� 

BK =
b

c
x ,  hence 

� 

BL =
b

c
x - b . 

Now we have: 

� 

AL = y +BL = y +
b

c
x - b .   

Since triangles 

� 

!LBC  and 

� 

!LAG  are similar, we obtain: 

� 

BC

BL
=
AG

AL
, hence:   

  

� 

 
x

b

c
x ! b

=
a

y +
b

c
x ! b

 

   

  

� 

x y +
b

c
x ! b" 

# 

$ 

% 
= a

b

c
x ! b" 

# 

$ 

% 
 

 

  

� 

xy +
b

c
x
2

! bx =
ab

c
x ! ab  

 

(2.7-1)      

� 

x
2

= cx !
c

b
xy + ax ! ac   

Descartes left the equation in this form because he wished to emphasize its second 

degree equation.  He concluded that the curve is of the first class and a hyperbola.  

Descartes, however, was assuming that his readers were well acquainted with 

Apollonius.   

 If one continues to let the triangle 

� 

!NLK  rise along the vertical line, and 

keeps tracing the locus of the intersection of 

� 

GL  with 

� 

NK , the lines will eventually 

become parallel (see Figure 2.7b), and after that the other branch of the hyperbola 

will appear (see Figure 2.7c). 
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    Figure 2.7b 
   

   These figures were made with Geometers Sketchpad,  although I have altered 

slightly the values of the constants 

� 

a , 

� 

b , and 

� 

c  from those in Figure 2.7a.  In Figure 

2.7b, the line 

� 

KN  is in the asymptotic position.  I will hereafter refer to this 

particular position of the point 

� 

K , as point 

� 

O .  In this position triangles 

� 

!NLK  and 

� 

!GAL  are similar, hence the length of 

� 

AK = AO =
ab

c
+b .  The slope of the 

asymptote is the same as the fixed slope of 

� 

KN , i.e. 

� 

b

c
 (recall that 

� 

KL = b , 

� 

NL = c , 

and 

� 

GA = a). 

 Let me rewrite equation  2.7-1 using 

� 

A  as the origin in the conventional 

modern sense, with 

� 

x  measured positively to the right.  To do that I must 

substitute 

� 

!x  for 

� 

x  .  Making this substitution and solving Equation 2.7-1 for 

� 

y  one 

obtains:  

 

(2.7-2)           

� 

y = ab
1

x
+
b

c
x +

ab

c
+b

! 

" 

# 

$ 
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    Figure 2.7c 
 

 One sees in Equation 2.7-2 that the linear equation of the asymptote appears 

as the last two terms of the equation.   In Figure 2.7c, I have shown, to the right, the 

lengths that represent respectively the values of the three terms in Equation 2.7-2,  

for the point P (#1-inverse term, #2-linear term, #3-constant term).  Term #3 

accounts for the rise from the 

� 

x -axis to the level of point 

� 

O  (the intercept of the 

asymptote.  Adding term #2, raises one to the level of the asymptote, and term #1 

completes the ordinate to the curve. 

 As a geometric construction, the hyperbola is drawn from parameters 

which specify the angle between the asymptotes (

� 

!NKL ), and a point on the curve 

(

� 

G ).  If I change the position of the point 

� 

N  without changing the angle 

� 

!NKL , the 

curve is unaffected as in Figure 2.7d.  The derivation of the equation  depends only 

on similarity, and not on having perpendicular coordinates.  As long as 

� 

GA  is 
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parallel to

� 

NL , the derivation of the equation is the same except for the values of 

the constants 

� 

NL = c , and 

� 

GA = a , which have both become larger.  Of course this 

equation is in the oblique coordinate system of the lines 

� 

GA  (

� 

x -axis) and 

� 

AK  (

� 

y -

axis).  It is the same curve geometrically, with the same form of equation, but with 

new constant values that refer to an oblique coordinate system.  As long as angle 

� 

!NKL  remains the same, and 

� 

G  is taken as any point on this curve, the device will 

draw the same curve.  This form of a hyperbolic equation, as an inverse term plus 

a line, depends only on using at least one of the asymptotes as an axis.     
            

  
    Figure 2.7d  
       

 I have encountered many students over the years who are well acquainted 

with the function 

� 

y =
1

x
, and yet are entirely unaware that its graph is an 

hyperbola.  Descartes' construction can be adjusted to draw right hyperbolas.  



    

David Dennis Curve Drawing Devices http://www.quadrivium.info  
 

112 

Consider the special case when the line 

� 

KN  is parallel to the 

� 

x -axis (see Figure 

2.7e).  The point 

� 

G  is on the negative 

� 

x -axis.  Let 

� 

KC = x , and 

� 

AK = y  (i.e. 

� 

C = (x,y) ) , 

� 

AG = a , and 

� 

KL = b .  Now 

� 

AL =  y ! b , and since triangles 

� 

!LKC  and 

� 

!LAG  are similar, we have: 

 

 

� 

KC

KL
=
AG

AL
, or 

� 

x

b
=

a

y ! b
,   hence the equation of the curve is: 

 

(2.7-3)       

� 

y = ab
1

x
+b  

A vertical translation by b would move the origin to the point 

� 

O , and 

letting

� 

a = b =1, would put 

� 

G  at the vertex 

� 

(!1,!1) , yielding a curve with an 

equation of 

� 

y =
1

x
. 

 

  
    Figure 2.7e 
 

 Equation 2.7-3 can be seen as a special case of Equation 2.7-2 obtained by 

substituting 

� 

!  for 

� 

c , where 

� 

c  is thought of as the horizontal distance from 

� 

L  to the 
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line 

� 

KN .  In this case the linear term disappears.  All translations and rescalings of 

the multiplicative inverse function can be seen as special members of the family of 

hyperbolas, via this construction. 

 One might ask how we know that these curves are in fact hyperbolas.  

Descartes said that this is implied by Equation 2.7-1.  In his commentaries on 

Descartes, van Schooten gives us a bit more detail (Descartes, 1952, p. 55, note 

[86]).  Once again these mathematicians assumed that their readers were familiar 

with a variety of ratio properties from Book 2 of Apollonius (1952; Heath 1961) that 

are equivalent to Equation 2.7-1.  My intention here is not to give a set of proofs, 

but to suggest a means whereby students could explore these relations on their 

own.   

 Several of the theorems of Apollonius concerning the relations between 

tangents and asymptotes are beautiful, and easily explored in this setting.  Using 

the asymptotes of a right hyperbola as edges to define rectangles, one sees that the 

points on the curve define a family of rectangles which all have the same area (see 

Figure 2.7f).  Letting 

� 

M  and 

� 

N  be any two points on the curve, Equation 2.7-3 

implies that the areas of 

� 

OPMS  and 

� 

OQNR  are both equal to 

� 

a ! b , the product of 

the constants used in the drawing the curve.  Another geometric property of 

interest is that the triangles 

� 

!TSM  and 

� 

!NQU  are always congruent.  This 

congruence provides one way to dissect and compare these rectangles in a 

completely geometric way (see Henderson, in press).  
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    Figure 2.7f 
 

   Approaching these questions analytically, assume that the curve in Figure 

2.7f has the equation 

� 

x ! y = k  (using 

� 

O  as the origin).  Let 

� 

M = (m,  k / m)  and 

� 

N = (n,  k /n) , i.e. 

� 

OP =m  and 

� 

OQ = n .  Writing the equation of the line through 

� 

M  

and 

� 

N , one obtains: 

� 

y =
!k
mn

x +
k

m
+ 
k

n

" 

# 

$ 

% 
.   Hence 

� 

TO =
k

m
+
k

n
, and since 

� 

SO =
k

m
, 

this implies that 

� 

TS =
k

n
= NQ .  Since triangles 

� 

!TSM  and 

� 

!NQU  are similar, this 

shows that they are congruent and that 

� 

TM =NU .  Now let the points 

� 

M  and 

� 

N  

get close to each other.  The line 

� 

MN  then gets close to a tangent line, and one can 

perceive the theorem of Apollonius, that the segment of any tangent line to a 

hyperbola, contained between the asymptotes, is always bisected by the point of 

tangency to the curve.  This simple and beautiful theorem immediately implies, for 

example, that the derivative of 

� 

1

x
 is 

� 

!1

x
2
, by simply looking at the congruent 

triangles. 

 This bisection property of hyperbolic tangents is not restricted to the right 

hyperbola.  Looking back at Figure 2.7-c, and Equation 2.7-2, one sees that any 

hyperbola coordinatized along its asymptotes will always have an equation on the 

form 

� 

x ! y = k  for some constant 

� 

k .  To see this, subtract off the linear and constant 

terms from the y-coordinate, and then multiply the 

� 

x -coordinates by a constant 

factor that projects them onto the asymptote 

� 

OQ .  In the general case the curve can 
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be seen as the set of corners of a family of equi-angular parallelograms which all 

have the same area.   In Figure 2.7g, for any two points on the curve, 

� 

M  and 

� 

N , the 

parallelograms 

� 

OQNR  and 

� 

OPMS  have equal areas.  Since the triangles 

� 

!TSM  and 

� 

!NQU  are congruent, by letting 

� 

M  and 

� 

N  get close together one sees that any 

tangent segment 

� 

TU  is bisected by the point of tangency (

� 

M  or 

� 

N ).   
 

     
    Figure 2.7g 
 

 An alternative view of the situations just described is to imagine any line 

parallel to 

� 

TU  meeting the asymptotes, and the curve in corresponding points 

� 

! T , 

� 

! M , and 

� 

! U .  Then the product 

� 

! T ! M "  ! M ! U = TM " MU .  That is to say, parallel 

chords between the asymptotes of a hyperbola are divided by the curve into pieces 

with a constant product.  This follows from our discussion, because the pieces are 

constant projections of the sides of the parallelograms just discussed.   It is this 

form of the statement that was most often used by van Schooten, Newton, Euler 

and others of that period (1650 -1750).  This statement (from Book 2 of Apollonius 

(1952)) was traditionally used as an identifying property of hyperbolas.  This 
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constant product was given as a proof by van Schooten that the curve drawn by 

Descartes' device was indeed a hyperbola (Descartes, 1952, p. 55).   

 In this way it is possible to make a fully circular investigation of hyperbolas, 

using both geometric and algebraic representations.  Neither representation is 

being used as a foundation for proof, instead one is lead to a belief in a relative 

consistency between certain aspects of geometry and algebra, through a checking 

back and forth between multiple representations.  A calculus derivation of the 

derivative of 

� 

y =1 / x  becomes, in this setting, a limited special case of the bisection 

property of hyperbolic tangents.  It can be very satisfying for students to see 

symbolic algebra arrange itself into answers that are consistent with physical and 

geometric experience.  Students can then experience the elation of Leibniz, as they 

build up a vocabulary of notation that becomes viable, because it can checked 

against independently verifiable, physical experience.  Mathematical language is 

then seen as a code for aspects of experience, rather than as a dictator of truth.  

This is a revealing example of what is meant by "genetic epistemology."  
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2.8  Conchoids Generalized from Hyperbolas  

 Descartes generalized the previous hyperbola construction method by 

replacing the triangle 

� 

!KLN  with any previously constructed curve.  For example, 

let a circle with center 

� 

L  be moved along one axis and let the points 

� 

C  and 

� 

! C  be 

the intersections of the circle with the line 

� 

LG , where 

� 

G  is any fixed point in the 

plane and 

� 

LG  is a ruler hinged at point 

� 

L  (see Figure 2.8a).  Then 

� 

C  traces out a 

curve of degree four, known in ancient times as a conchoid (Descartes, 1952, p. 55).  

The two geometric constants involved are the radius of the circle 

� 

r , and the 

distance 

� 

a  between the point 

� 

G  and the axis, along with the axis along which L 

moves.   

 Figure 2.8a shows three examples of conchoids for 

� 

a > r , 

� 

a = r , and 

� 

a < r .  If 

the curve is coordinatized along the path of 

� 

L  (

� 

OL , a true Apollonian axis), and a 

perpendicular line through 

� 

G  (

� 

OG ), then its equation can be found by looking at 

the similar triangles 

� 

!GOL  and 

� 

!CXL  (top of Figure 2.8a).  Since 

� 

GO = a , 

� 

LC = r , 

� 

CX = y , 

� 

OX = x , 

� 

XL = r
2

! y
2 , one obtains the ratios of the legs in the triangles as: 

� 

r2 ! y2

y
=

r 2 ! y 2 + x

a
, which is equivalent to: 

� 

x
2
y
2
= (r

2
! y

2
)(a ! y)

2 , which is of 

fourth degree, or of Descartes' second class.  The squared form of the equation has 

both branches of the curve, above and  below the axis, as solutions. 

  This example demonstrates Descartes' claim that, as one uses previously 

constructed curves to draw new curves, one gets chains of constructed curves that 

go up by pairs of algebraic degrees.  Descartes called the conchoid a curve of the 

second class (i.e. of degree three or four).  Dragging any rigid conic-sectioned 

shape along the axis, and drawing a curve in this manner will produce curves in 

the second class.  Dragging curves of the second class will produce curves of the 

third class (i.e. degree five or six), etc.  Descartes demonstrated this general 
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principle by example, but he did not offer anything like a formal proof, neither 

geometric nor algebraic.  His definition of curve classes was justified by his 

geometric experience. 
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    Figure 2.8a 

 

 



    

David Dennis Curve Drawing Devices http://www.quadrivium.info  
 

120 

 Notice that when 

� 

a ! r , the point 

� 

G  becomes a cusp or a crossover point.  

When singularities like cusps or crossover points occur, these tend to occur at 

important parts of the apparatus, like pivot points (e.g. point 

� 

G ), or at a point on 

an axis of motion.  Other examples of this phenomena will  be displayed using 

Newton's organic devices (Section 2.11).  I am not stating any particular or explicit 

mathematical theorem here.  This observation is based upon my own empirical 

experience with curve drawing devices.  There are probably several ways to make 

this observation into an explicit mathematical statement, subject to proof (Newton 

attempted several, 1968), but I wish to make the educational claim that students 

will benefit enormously from such empirical experience regardless of the extent to 

which they eventually formalize that experience in algebraic or logical language.  

An instinctual sense of where curve singularies might occur is fundamentally 

useful in many sciences.  

 One might ask here, why should one care about curves such as these 

conchoids?   These curves and others generated from moving circles and lines (e.g. 

the cissoid, quadratrix, and spiral) were used by geometers to solve a number of 

important algebra and geometry problems (Descartes, 1952, p.40).  They have been 

eliminated from our secondary curriculum, I feel, because they raise all of the 

difficult issues concerning the limitations of our standard notion of a function, and 

our belief that that notion can serve as universal umbrella concept under which all 

curves can be discussed.  Our curriculum is governed not by what is useful in 

engineering or science, but by what is convenient in terms of the formal algebraic 

conventions of our standardized mathematical language.   

 The graphs of polynomial and rational functions do not occur 

spontaneously in terms of motion and mechanics.  By focusing on these curves 

what is largely eliminated is the investigation of cusps and cross-over points which 

are very important in science (Arnol'd, 1990).  If one goes on to study advanced 
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calculus one repeatedly encounters the proviso on theorems that "any curve can be 

piece-wise defined by functions."  It becomes a kind of litany that one learns to 

ignore, but hidden in this statement in the implicit belief that the function concept 

is the big idea which includes all others.  When studying curves generated by 

physical motions, functions are most effective as secondary linguistic tools.      

 I want to suggest that even before students can deal effectively with the 

equations of such curves, that they be exposed to the curves that occur as simple 

geometrical motions.  Functions might well be introduced gradually as tools for 

the analysis of increasingly complex motions, rather than immediately taking 

center stage.  I hereby confess to having fond memories of my childhood hours 

spent with a curve drawing toy known as the Spirograph™.  I was saddened as a 

child by the lack of interest of my teachers in the mathematics of that toy (Hall, 

1992).  Such devices belong in our mathematics classrooms.  
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2.9  Drawing Ellipses with Trammels  

 

 I begin this section by describing a device for drawing ellipses which is very 

old, and is used by carpenters around the world.  This device is mentioned in 

American vocational educational programs, and was recently found in use among 

South African carpenters with little or no formal education (Milroy, 1990).  It 

consists of placing a straight link (the trammel) within the right angle of a 

carpenters square, and then tracing the curve drawn by any point on the trammel 

as its ends move against the legs of the square.  See Figure 2.9a, which is again 

taken from van Schooten (1657, p. 325).  This device is quite natural for use by 

artists and crafts people, because it creates an ellipse, not from foci, but from the 

lengths of its axes.  It also utilizes the most common tool of builders: the square. 
 

  
           Figure 2.9a 
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 It can be seen from the action of the device that 

� 

AK =CE , and that

� 

AG = DE , 

so that the trammel size and the position of the point 

� 

E  will determine the lengths 

of the axes, but how does one know that this device is tracing a true ellipse?  Let 

me first look at the special case where the pencil at 

� 

E  is riding on the midpoint of 

the trammel 

� 

CD .  I claim the curve being drawn in this case is a circle.  To see this 

drop the vertical line from 

� 

E  to meet 

� 

AK  at 

� 

O  (see Figure 2.9b).  Since triangles 

� 

!CDA and 

� 

!EDO  are similar, and 

� 

E  is the midpoint of 

� 

CD , then 

� 

O  is the 

midpoint of 

� 

AD .  Hence triangles 

� 

!EOD  and 

� 

!EOA  are congruent (by SAS), and 

therefore 

� 

AE = ED =CE .  Since this is true for all positions of the trammel, 

midpoint 

� 

E  is tracing a circle of radius 

� 

CE = ED .  
 

    
    Figure 2.9b 
 

 Returning to the general case, let 

� 

CE = a , and 

� 

ED = b .  I wish to show that 

point 

� 

E  on the trammel 

� 

CD  traces an ellipse with a horizontal axis of length 

� 

2a , 

and a vertical axis of length 

� 

2b .  While drawing this curve I will simultaneously 

draw a circle with radius 

� 

a , using another trammel 

� 

SR of length 

� 

2a  with its 

midpoint at 

� 

P  (see Figure 2.9c).  Keeping the two trammels parallel to each other 

as they draw, one sees that triangles 

� 

!POR  and 

� 

!EOD  are similar, hence at each 
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point 

� 

PO

EO
=
PR

ED
=
a

b
.  If one coordinatizes using 

� 

A  as the origin, this says that for 

every abscissa 

� 

x = AO , the ordinate of the circle  

� 

y = PO=
a

b
! EO .  Since the equation of the circle is 

� 

x
2 

+ y
2

= a
2 , letting 

� 

! y = EO  (the 

ordinate of the curve), the equation of the curve is: 

� 

x
2 

+
a

b
! " y 

# 

$ 

% 

& 

2

= a
2 ,  

which is equivalent to: 

� 

x
2

a2
+

! y 
2

b2
=1.  The equations are mentioned here for a 

modern reader, but they are not necessary in order to prove that the trammel 

draws an ellipse.   If one views ellipses as curves proportionally related to circles 

(as did Apollonius and van Schooten; see Section 2.2), the proof would then end a 

few lines earlier.   
 

 
      Figure 2.9c 
 

 The previous construction yields more than just a guarantee that the curve 

is an ellipse, and an equation.  It gives the area of the ellipse relative to the 
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circumscribed circle.  It is nice to think of area here in the sense of Cavalieri's 

notion of the motion of a variable line segment, or in a more physical sense as a 

stack of cards.  I have shown that each card in the deck (ordinate) that forms the 

ellipse is 

� 

b

a
 times the corresponding card in the deck (ordinate) that forms the 

circle of radius 

� 

a .  Hence the area of the ellipse is 

� 

b

a
(!a

2
) = !ab . 

 This ratio holds not only for the area of the entire ellipse, but also for the 

area over any piece of the axis.  For example, the area of the circle over the 

segment 

� 

OK  could be found by subtracting the area of triangle 

� 

!AOP  from the 

area of the circular sector 

� 

AKP .24  Multiplying by 

� 

b

a
 would then give the area of 

the ellipse over the segment 

� 

OK .   

 Many users of computer graphics have experienced this view of ellipses as 

circles with a uniform compression or expansion in one dimension.  Novice 

computer users are often disturbed when they enter the equation of a circle, and 

the graph window shows an ellipse because they do not have identical scales on 

both axes.  This phenomenon first led me to the disturbing realization that some 

computer pixels are not square, but rectangular. 

 All of these curve drawing devices can give rise to a host of interesting 

related rate problems.  This particular device is indirectly mentioned in nearly 

every calculus book as the "ladder sliding down the wall problem."  Usually one 

end of a trammel is assumed to be moving at a constant rate, and questions are 

then posed about the variable rate of the other end, or of points in between.  I have 

talked with many calculus teachers, all of whom were familiar with this problem, 

but I have yet to meet one who was aware that the points on the sliding ladder 

follow elliptical paths.  I myself discussed this problem for years, and was never 

                                                 
24  In section 2.14, I will describe how Leibniz used another curve drawing device to generate an 
infinite series for the integration of circles. 
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aware of this.  This points out how routinely teachers talk about situations in math 

classes with which they have no physical or empirical experience at all.  Several 

calculus teachers have told me how most students in their classes detest the 

"ladder sliding down the wall problem."  My response is that students must be 

allowed to do it.  From the active experience far more emerges than just the 

solution to this standard calculus rate problem. 

 Returning to the trammel I wish to point out that any point on the line 

� 

CD  

will trace an ellipse, even if it does not lie between 

� 

C  and 

� 

D.  See Figure 2.9d from 

Van Schooten (1657, p. 324).  The lengths of the axes are still 

� 

2 !CE and 

� 

2 !DE .  

Some people may be familiar with this form of the device as a popular desk top 

toy known as the "BS grinder."  
 

   
               Figure 2.9d 
 

 What happens if one traces curves using a trammel whose ends are moving 

along lines which are not at right angles?  (See Figure 2.9e.)  The answer is that one 

still traces ellipses, but now neither the path of 

� 

C  nor of 

� 

D are axes of symmetry 

for the curve.   Their intersection, however, remains at the center, and hence the 
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ends of the trammel still move along Apollonian diameters.  Finding the standard 

equation of the curve along an axis can be difficult here, but, using Apollonius, we 

can see what its equation will be by using one track as a diameter, and finding its 

appropriate ordinate direction.  See Figure 2.9e from Van Schooten (1657, p. 329).  

When 

� 

!CDA = 90° , then point 

� 

E  will be at its maximum height, and therefore the 

tangent there will be horizontal.  Hence at this point, 

� 

AE  is the conjugate diameter 

to

� 

AL .  The angle �

� 

!EAD = "  can be determined from the fixed angle 

� 

!CDA = "  of 

the rulers, since the ratio of their tangents is equal to 

� 

a + b

b
.  Now half the length of 

the conjugate diameter 

� 

AE  will equal 

� 

b

sin!
, and so an equation of the curve along 

the diameter 

� 

AL , using its ordinate direction 

� 

AK , will be 

� 

x
2

a2
+
sin

2
!( )y 2

b2
=1  

 

  
    Figure 2.9e 
 

 Another variation on the trammel device (see Figure 2.9f) is to replace the 

linear trammel with any rigid triangle (

� 

!CDE ), and let 

� 

C  and 

� 

D move along 

perpendicular paths as before.  The point 

� 

E  will once again trace out an ellipse 

skewed to the paths of 

� 

C  and 

� 

D.  This device was mentioned several times in the 
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work of by Leonardo Da Vinci (for more details, see Pedoe, 1976).  I have never 

discovered exactly how or why Leonardo employed such a device, but after 

playing with one I have a guess as to why an artist might find this method of 

drawing ellipses useful. 
 

    

   
    Figure 2.9f  
 

  The sides of the triangle 

� 

DE  and 

� 

CE  will determine the size of the 

rectangle which circumscribes the ellipse, since they are the maximum horizontal 

and vertical  displacements of the point 

� 

E .  By leaving these two sides of the 
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triangle fixed, and varying the length of 

� 

CD , one can draw the entire family of 

possible ellipses which can be circumscribed in a fixed rectangle.  Using ellipses as 

projected circles, and fitting them into prescribed rectangular spaces is exactly the 

problem that often comes up in drafting.  Templates of such families of ellipses 

were common drafting tools until the advent of computers. 
 

  
    Figure 2.9g  
  

 Returning to the original trammel in Figure 2.9a, van Schooten transformed 

this device into another as follows.  Let 

� 

B be the midpoint of 

� 

CD .  Since the point 

� 

B describes a circle around

� 

A , one could connect it to point 

� 

A  with a hinged link 

half the length of 

� 

CD .  One could then cut off half of the trammel 

� 

CB , and the 

motion of the other half (

� 

BD) would remain unchanged by this transformation.  

See Figure 2.9g from van Schooten (1657, p. 322).  The curves described by any 

point 

� 

E  on 

� 

BD , as 

� 

D moves along the horizontal remain the same as when 

� 

E  rode 
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on the trammel.  The semi-major axis is 

� 

AB + BE  and the semi-minor axis is 

� 

AB ! BE .  I like to call this device the folding straw device, because I have 

demonstrated its action over lunch to many people by folding a plastic straw in 

half and piercing it with a pen.  More discussion of this device, in conjunction with 

the trammel, will be found in the student interviews in Chapter 3. 

 The transformation of the trammel into this device is a proof that it draws 

ellipses but it depends on having 

� 

AB = BD .  If these two lengths are not equal, the 

device will draw ovals which are egg shaped, i.e. having a tighter curve at one end 

than the other.  If 

� 

AB  and 

� 

BD  are extremely unequal it will draw curves shaped 

like kidney beans.  This family of curves falls into Descartes' second class (i.e. 

degree four with possible special cases of degree three).  An example is shown in 

Figure 2.9h.  I was surprised by this since the other distortions of the original 

trammel device continued to draw ellipses.  
 

    
    Figure 2.9h 
 

 Interesting variations on the trammel device can be obtained by letting one 

end of a trammel move along a line, while the other end moves along a circle.  See 

Figure 2.9i for an example.  Archimedes used such a trammel to trisect an arbitrary 

angle (Courant & Robbins, 1941), and Newton generalized Vieté's description of 

such a device as a general method for geometrically constructing the solutions of 

cubic equations (1967, p.72).   
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            Figure 2.9i 
 

 The point 

� 

D of the folding straw in Figure 2.9g can also be linked to a circle 

in which case, thinking of the radius of the circle as a third link, one returns to the 

general problem of three links between two fixed points mentioned in Sections 2.5 

an 2.6.  Another way to think of the three link problem is to imagine a trammel 

that moves between two circles.  Thinking of the centers of the circles as the fixed 

points, and their radii as the two other links, this situation is equivalent to tracing 

the path of a point on the middle link of three links between two points. 

 The three link situation is of fundamental importance in mechanical 

engineering, and the curves that it generates provide a situation in which to 

investigate a family with a remarkable set of variations (Artobolevskii, 1964).  

Although these curves come from very simple linkages, and are easy to draw, it is 

very challenging to analyze them from an algebraic standpoint.  Many geometric 

descriptions and conjectures are sure to arise from a investigation of these curves.  

Eliminating such topics solely because they present algebraic difficulties leads 

students to a false dependency.  If they have only seen curves with easy algebraic 

representations, then they will begin to think that algebra will always be the best 

approach.  These curves, which have a simple method of generation, will quickly 
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disabuse one of over dependence on algebra.  Figure 2.9j shows one of my favorite 

examples of this family of curves, most of which tend to have a figure-8 sort of 

shape.   I suggest an investigation of these curves as a group project for students.  

It is sure to lead to some surprises.  
 

   
    Figure 2.9j 
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2.10  Fermat's Quadratic Transformations  

 One of the first mathematical works by Pierre de Fermat was his  

Introduction to Plane and Solid Loci,  which was sent to his friends in Paris in 1637, at 

almost the same time that Descartes was reviewing the galley proofs of his 

Geometry.  Fermat worked within the school of analysis laid out by Vieté.  His 

notations, unlike Descartes', adhere quite strictly to those used by Vieté, and his 

system bears a great similarity to the language of, for example, Galileo.  Fermat 

was not trying to create a new language or system, but was trying to push forward 

with the analytic program that had been laid out by Vieté and his followers 

(Mahoney,1973; Klein, 1968).  He was a well established provincial lawyer, and 

government official who pursued mathematics in his spare time.   

 Fermat considered his work Introduction to Plane and Solid Loci  to be a 

commentary on Apollonius, but in it he developed his own system of analytic 

geometry.  His approach and style differ considerably from that of Descartes.  As I 

have shown, Descartes was concerned with finding equations for curves that he 

first constructed geometrically.  Fermat was mainly concerned with classifying 

equations according to the shape of the curve that is produced by geometric 

interpretations of the variables.  His approach was to create the curves from 

equations, and thus he studied graphs of equations in way that is much closer to 

analytic geometry as it currently taught.  It is interesting to note that Descartes' 

background was in military engineering, while Fermat began his career working 

for the government on tax and monetary policy.  Mechanical engineering is alien 

to Fermat's thinking, instead he worked extensively on financial mathematics, and 

eventually developed the first systematic techniques for solving maximum and 

minimum problems (Mahoney, 1973).  His work pioneered the study of graphical 

representations of numerical and algebraic phenomena.    
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 Fermat's method of interpreting algebraic equations is to consider a fixed 

line and a line segment of variable length, one of whose endpoints moves along 

this line.  As in Apollonius, all of the line segments make the same angle with the 

fixed line, but this angle need not always be a right angle.  Thus his graphing of 

equations is more general than what is usually taught in our curriculum.   

 The main theorem of his Introduction  is that any equation of second degree, 

in two variables, graphed at any fixed ordinate angle, will always produce a conic 

section.  This is the converse of Descartes' assertion that all conic sections will have 

second degree equations no matter how they are coordinatized.  Fermat created 

seven standard equations whose loci he demonstrated, and then proceeded to use 

transformations to reduce all other second degree equations to one of these seven 

types.  These seven standard equations are essentially algebraic interpretations of 

the standard ratio properties from Apollonius.   

 Fermat, for example, showed that 

� 

b
2

! x
2

= y
2 produces a circle of radius 

� 

b  

when  segments of length 

� 

y  are erected at a right angles, at points along an axis 

where 

� 

x  measures distances from some fixed point on that axis.  That is to say the 

endpoints of the segments trace out a circle.  Similarly he showed that the equation 

� 

b
2

! x
2

= ay
2  produces an ellipse, but here the fixed angle between the ordered 

segments (ordinates) and the axis (abscissas) is arbitrary.   

 Although Fermat was working from a largely algebraic point of view, his 

transformations of equations utilized methods that, although not mechanical, are 

almost equivalent to curve drawing devices.  As an example, I wish to describe one 

of Fermat's reductions of a more complicated equation to one of his general forms 

(I will use modern notational conventions which are nearly identical to those of 
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Descartes25) (Mahoney, 1973, p. 89).  Starting with the equation 

� 

b
2

! 2x
2

= 2xy + y
2 ,  

Fermat began by rewriting the equation as:   

� 

b
2

! x
2

= x + y( )
2 .  Now let 

� 

N  be a fixed point on a fixed line 

� 

NM  and let 

� 

Z  be a 

moving point on that line whose distance from 

� 

N  is 

� 

x .  Constructing a 

perpendicular segment 

� 

ZI  at 

� 

Z  whose length was 

� 

x + y , Fermat knew from the 

second equation that the endpoint 

� 

I  traced out a circle of radius 

� 

b  (see Figure 

2.10a).   

 Now from the point 

� 

N  construct a line 

� 

NR at 45° to the fixed line 

� 

NM .  

Extend each ordinate of the circle 

� 

ZI  to meet this line at a point 

� 

O .  Now define the 

point 

� 

V  so that 

� 

OV = ZI = x + y .  As 

� 

Z  moves along the horizontal axis, the point 

� 

V  

will now trace out a new locus as shown.  This construction can be carried out 

dynamically using Geometer's Sketchpad  by defining the locus from a the point 

� 

I  

revolving on the circle. 
 

   
    Figure 2.10a 
 
                                                 
25  The notation of Fermat was not hugely different.  For example, he used "A" and "B" as his 
varibles and his exponents were written differently. 
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 Fermat chose the 45° angle so that 

� 

NZ =OZ = x .  Since 

� 

OV = x + y , then 

� 

ZV = y  by subtraction, and therefore 

� 

ZV  acts as the ordinate which represents our 

original equation in the system of perpendicular ordinates from the line 

� 

NZ .  But 

now consider 

� 

V  as the endpoint of the moving segment 

� 

OV , as point 

� 

O  moves 

along 

� 

NR.  In this system the fixed ordinate angle is 45°.  Let 

� 

u =NO  and 

� 

v =OV ; then 

� 

u = 2x , and 

� 

v = x + y .  Substituting these into the 

original equation, it becomes: 

� 

b
2

!
u
2

2
= v

2 ,  or 

� 

2b
2

! u
2

= 2v
2 .   From this equation 

Fermat knew that the point 

� 

V  traced out an ellipse because this is one of the 

standard equational forms coming from Apollonius.  That is to say that 

� 

NR and a 

vertical line through 

� 

N  are conjugate diameters of the ellipse.  Note that the 

tangent to the ellipse at 

� 

R is vertical and the tangents at 

� 

L  and 

� 

K  (where 

� 

x = u = 0) 

are parallel to 

� 

NR.  

 This is one of Fermat's more imaginative transformations, but the technique 

is typical of his entire approach to analytic geometry.  He shifts the geometric 

framework until the unknown locus (graph) of an equation becomes recognizable.  

Fermat did not really use coordinate geometry as we know it.  His approach has 

been called ordinate geometry or axial geometry because he worked at various 

angles from one axis.  It should also be stressed that Fermat was not providing 

what we would now call complete proofs.  The example described above is, 

however, completely general.  There is nothing special about the twos in the 

original equation.  By choosing the appropriate angle for the axis 

� 

NR, any equation 

of this form can be reduced to an ellipse measured in a standard Apollonian 

system  (i.e. seen to have a standard equation).   

 It is interesting to vary this angle on Geometer's Sketchpad  and observe its 

effect on the resulting ellipse.  For example, when the angle 

� 

!MNR = 60
° , the 

ellipse is much more eccentric.  As before

� 

OV = ZI , but here the new system

� 

NO, 
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� 

OV , has a fixed 30° angle (see Figure 2.10b).  For more details on Fermat and his 

mathematics, see Mahoney's book on the subject (1973). 
  

   
    Figure 2.10b 
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2.11  Newton's Organic Constructions  

 Among the mathematical papers of Isaac Newton (1642 - 1727) there are 

several investigations of curve drawing devices, and one type in particular is 

discussed repeatedly in his papers (1968).  Newton published very little of these 

researches, but a letter containing some of his thoughts was circulated early in his 

life, and was read by Leibniz.  Although Newton published very little of the details 

of his mathematics in his lifetime, his private papers reveal great detail as to the 

directions of his thoughts.  Thanks to the monumental editing work of D. H. 

Whiteside (Newton, 1967; 1968) all of these original papers are now generally 

available (in 8 volumes). 

 Van Schooten had explicitly searched for a single uniform method by which 

he could draw all conic sections using continuous uninterrupted motions.  As was 

shown in Sections 2.5 and 2.6, he came very close to succeeding.  Newton carefully 

studied both Descartes and van Schooten, and extended the work of both in the 

years 1667 and 1668 (see Whiteside's introduction to Newton, 1968).  He produced 

the first systematic classification of cubic curves (30 varieties) (Newton, 1968).       

 I shall describe one type of linkage device that was invented by Newton as a 

solution to van Schooten's quest.  He seems to have claimed at various points in 

his papers that this one device, when iterated, is capable of drawing all possible 

algebraic curves.  His proofs, however, are incomplete, and I have been unable to 

complete or contradict them.  This device is quite simple to construct and can be 

very easily animated on Geometer's Sketchpad .  It produces an abundance of clear 

examples of Descartes' principle that as one iterates a device, the algebraic degree 

of the equations jumps up by two, and also that special points on the device often 

become special points on the curve (i.e. cusps, crossover points, etc.).   
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 Imagine a pair of rulers hinged together at a point with a locking screw that 

will fix the angle between them.  Now pin the pair of rulers to a plane so that the 

rulers can rotate together around their intersection point

� 

A , always preserving the 

fixed angle between them.  Now make a second such pair of rulers (having a 

possibly different fixed angle), and pin them down to rotate at a second fixed point 

� 

B in the same plane.  Newton called these two points (

� 

A  and 

� 

B) the "poles" of the 

rulers.    

 The construction then worked as follows.  Let one of rulers from 

� 

A  and one 

from 

� 

B meet at the point 

� 

D.  Now move 

� 

D along any previously constructed 

curve, and trace the locus of the intersection 

� 

P  of the other two rulers (one from 

� 

A  

and one from 

� 

B).  Newton called the rulers that meet at 

� 

D the "directing legs," and 

the ones that meet at 

� 

P  the "describing legs."   The previously described curve 

along which point 

� 

D moves, he called the "directrix."  Thus his device draws new 

curves from old ones.  Newton's use of the term "directrix" is far more general than 

our modern usage, but gives more sense to the meaning of the word as a path 

which "directs" the construction of a curve.  In Section 2.4 the directrix of the 

parabola did indeed direct the drawing of the curve via van Schooten's device, but 

that is only a special case of what Newton had in mind.  Throughout this section I 

will use the term "directrix" in the broader Newtonian sense.       

 To begin building curves, one starts by using a line as a directrix.  As the 

point 

� 

D (the intersection of the directing legs) moves along this given line the 

point 

� 

P  (the intersection of the describing legs) will move along a conic section.  

The type, size and position of the conic will be determined by the placement of the 

poles, 

� 

A  and 

� 

B, the sizes of the two fixed ruler angles, and the position of the 

directrix.  In each of the figures in this section I have marked the fixed angles 

rotating around 

� 

A  and 

� 

B, with bold line segments.  The directrix is always labeled 
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with the points 

� 

D and 

� 

R.  Color coding on Geometer's Sketchpad is quite helpful 

here.  

       
    Figure 2.11a 
 

 Figure 2.11a shows Newton's device drawing an ellipse.  The ellipse is not 

complete because this device always sets up a one to one correspondence between 

the points on the directrix (line

� 

DR) and the points on the curve traced by 

� 

P .  I 

have shown the portion of the curve of the curve that is drawn by letting 

� 

D move a 

few inches off the figure on both the right and the left.  The missing piece of the 

curve will be drawn, at increasingly slow rates, by positions of 

� 

D along the rest of 

the infinite line of the directrix.  The motion of point 

� 

D along the directrix provides 

a very explicit, physical sense of a parameter which governs the generation of 

points on the curve.  The introduction of functional language into this example 

would most naturally be expressed in terms of this physical parameter.    
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    Figure 2.11b 
 

 Figure 2.11b shows Newton's device drawing a hyperbola.  Again there is a 

missing piece of the curve that corresponds to positions of 

� 

D far to the right and to 

the left.  It is interesting to locate the position on the curve that corresponds to 

� 

D at 

� 

! .  Both 

� 

D = ±! correspond to the same point on the curve where the directing 

legs become parallel.   

 With Descartes' hyperbolic device in Section 2.7, one of the ∞-points on the 

hyperbola at the ends of one of the asymptotes was smoothly connected by a small 

motion of the device and the other ∞-point corresponded to the ∞-point of the 

linear motion of the device.  Here the ∞-point of the directrix does not correspond 

to either one of the ∞-points on the hyperbola at the ends of the asymptotes.  Both 

asymptotes are smoothly connected by small motions of 

� 

D along the directrix.  

Descartes avoided any direct mention of ∞-points, but Newton used them quite 

freely.  These curve constructions lend themselves quite naturally to a discussion 

of curves in projective geometry, a subject that would flourish in England for the 

next two centuries (Richards, 1988). 
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 Newton considered the case where a ruler pivot point (a pole) is allowed to 

be placed at infinity.  This "rotation" of two rulers around a point at infinity means 

that the two rulers move parallel to each other, in a fixed direction, at a fixed 

distance apart.  Figure 2.11c draws a parabola by moving the pole 

� 

B to infinity, 

and placing the rulers through 

� 

B at right angles to the "directrix" 

� 

DR .  Note that 

the line 

� 

DR  does not usually correspond with the modern restricted meaning of 

the term "directrix" even for parabolas.  In Figure 2.11c, 

� 

DR  is a "directrix" for the 

parabola but it is not the "directrix"  in the modern sense.  Note that in Figures 

2.11a and 2.11b, the poles 

� 

A  and 

� 

B were on the curves.  In Figure 2.11c the ends of 

the parabola are approaching the pole 

� 

B at infinity.       
 

   
    Figure 2.11c 
 

 Newton emphasized the utility of this device for solving the problem of 

drawing a conic section through any five points in a plane (1968, p. 119).  Let the 

five given points be 

� 

A , 

� 

B, 

� 

C , 

� 

E , and 

� 

F .  Place the hinged sets of rulers at 

� 

A  and 

� 

B, and set the fixed angles so that the rulers at pole 

� 

A  have angle 

� 

!CAB , and the 

rulers at pole 

� 

B have angle 

� 

!CBA .  This places the intersection of the describing 

legs at 

� 

C , just when the two directing legs coincide along the line 

� 

AB .  Having 
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fixed these ruler angles now rotate both pairs so that the intersection of the 

describing rulers 

� 

P  falls at the next point 

� 

E .  Now mark the position of the 

intersection of the directing rulers 

� 

D
1
.  Do the same for the last point 

� 

F , to find 

another point 

� 

D
2
.  Let the directrix be the line through these two marked points 

� 

D
1
 

and 

� 

D
2
.  The device will now be set to draw a conic section passing through all five 

points 

� 

A , 

� 

B, 

� 

C , 

� 

E , and 

� 

F .  Newton suggested that: 

 
after you have described the curve one way, you may test it in 
others whether the description is accurate: precisely, by fixing the 
rules in other angles (say 

� 

!EAB , and 

� 

!EBA  and so on) or by 
taking other points for the poles of the rules"  
(Newton, 1968, p. 119). 
 

When one follows Newton's suggestion, and interchanges the roles of the five 

points in this construction, one draws the same curve, but in a very different way 

and at very different rates along the same sections of the curve, i.e. using very 

different parameters of motion. 

 Newton's organic curve drawing device is capable of describing curves 

from a variety of other given sets of geometric prerequisites, without recourse to 

analytic methods.  For example, one could construct a conic passing through four 

specified points and having a specified tangent at one of those points, or a conic 

passing through three points with two specified tangents, or a conic through four 

points with a specified line parallel to an asymptote, etc.  (Newton, 1968, p. 123).   

 Newton went on to give ways to draw third and fourth degree curves 

(Descartes' second class of curves) from given geometric prerequisites.  In these 

cases, one must use a conic section as a directrix.  In Figures 2.11d, 2.11e, and 2.11f, 

I have used Geometer's Sketchpad to draw some examples of fourth degree curves 

using, each time, a circle as a directrix.  I have varied the positions of the poles (

� 

A  



    

David Dennis Curve Drawing Devices http://www.quadrivium.info  
 

144 

and 

� 

B) with respect to the circle.  Starting with 

� 

A  and 

� 

B both outside the circle, I 

have drawn a figure-8 shaped curve (Figure 2.11e).  Point 

� 

A  is not on the curve, 

but 

� 

B is a singular point where the curve crosses itself.  
        

     
    Figure 2.11d 
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          Figure 2.11e 
 

 In Figure 2.11e, I have moved the pole 

� 

B inside the circle.  There are now 

two asymptotes.  The pole at 

� 

A  has now become a cross over point as well, but 

different branches of the curve cross at point 

� 

A .  By moving 

� 

A  inside the circle as 

well, both 

� 

A  and 

� 

B become the intersection points of different branches, and the 

loop which once passed through 

� 

B is now outside the circle (see Figure 2.11f).  

Newton's curve drawing device can provide many interesting and beautiful 

examples of the trends we have seen thus far.  Iterating devices tends to jump the 

algebraic degree of the curves up by two, and pivot points in constructions tend to 

become singularities (Newton called them "principal points").  
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          Figure 2.11f 
 

 This method of drawing curves readily solves a number of problems 

geometrically, but does not lend itself very easily to analytic methods.  Writing 

equations from the geometric parameters in these devices can be quite difficult.  

Newton's first attempt, in 1668, at an algebraic analysis of this device ended in a 

hopeless tangle of equations (Newton, 1968, p. 152)26.  It was not until many years 

later that he was able to give a complete analytic proof that when the directrix is a 

straight line, the curve described is a general conic  (Newton, 1968, vol. 5).  The 
                                                 
26  For a constructivist educator, who wishes to work  historically, these rambling worksheets of 
Newton's, filled with mistakes and comments  could prove fertile material.  They provide 
evidence that is almost the equivalent of a clinical interview.   
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main problem seems to be that the device depends primarily on a pair of fixed 

rotations, and rotations are difficult to deal with analytically within a fixed 

rectangular coordinate system.   

 There is an educational trend to discuss transformations earlier in our 

secondary curriculum, but this is usually restricted mostly to reflections, 

translations and changes of scale.  If one is tied to a rectangular coordinate system 

as an epistemological prerequisite, then rotations are just too hard to deal with.27  

Curricular  fixation on a narrow concept of function excludes general curve 

constructions and their natural parameters.  This fixation leads to a general 

reluctance to discuss rotations, since when one rotates the graph of function, it is 

no longer the graph of a function in this narrow sense.  This policy, that if 

something can't be discussed algebraically, then it's better not to mention it, limits 

our curriculum unjustifiably.  Rotations are  simple and natural physical actions, 

and they should be discussed early on in mathematics classes.  Both Newton's 

device and those that defined ellipses and hyperbolas as the set of points 

equidistant from a point and a circle (Sections 2.5 and 2.6), depended on actions 

that involved two rotations.  They were easily animated on Geometer's Sketchpad 

and revealed a variety of important aspects of the curves (e.g. the modeling of 

orbits or projective properties).   

Newton's organic construction of curves leave many open mathematical questions.  

He never resolved many of his claims, but his private papers indicate the extent to 

which his experience with drawing curves provided a foundation of grounded 

activity from which many of his later researches benefited.  I think that students 

who played with these devices might easily come up with a large number of 

                                                 
27  For an example of how far this trend has gone, consider the entirely unnatural definition of a "rotation" given in 
the newly reformed Geometry textbook issued by the University of Chicago School Mathematics Project:  
"Definition:  A rotation is the composite of two reflections over intersecting lines"  (Coxford, et. al., 1993, Lesson 6-
3, page 267). 
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interesting mathematical conjectures which could spur wonderful discussions.  

Lack of closed algebraic solutions should not deter such discussions, especially 

when students have ready access to computers with dynamic capacity for 

experimentation.  Exposure to difficult and intriguing open mathematical question 

in this intuitive physical setting could create an open secondary classroom 

atmosphere like the one described by Lakatos in Proofs and Refutations (1976).  
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2.12  Descartes' Geometric Means and a Construction of Log Curves  

 

 This section contains two investigations.  First, I will describe Descartes' linkage 

device for finding any number of geometric means between any pair of lengths.  This 

device produces a family of curves which I will analyze briefly.  Second, I will employ 

Descartes' device as part of a construction that will find any number of points, as 

densely as desired, on any logarithmic or exponential curve.  This construction of log 

curves closely parallels some of the later work of Descartes, but uses a more modern 

setting.   This modernization combines historical ideas with several theories and ideas 

of Jere Confrey concerning the use of computers, covariation, and multiple 

representations (1993a; 1992), and her work on exponential functions (1988). 

 In the Geometry (1952), Descartes considered the problem of finding n mean 

proportionals (i.e. geometric means) between any two lengths 

� 

a  and 

� 

b  (with 

� 

a < b).  

That is to find a sequence of lengths, beginning with 

� 

a  and ending with 

� 

b , such that the 

ratio of any two consecutive lengths is constant.  In modern algebraic language, that is 

to find a sequence   

� 

x
0
,x

1 
,…,  x

n+1
 such that for some fixed ratio 

� 

r , 

� 

x
k
= a

.

r
k , and 

� 

x
n+1
= b .  

Hence the terms of the sequence have a constant ratio of 

� 

r , and form a geometric 

sequence beginning with 

� 

a  and ending with 

� 

b . 

 Descartes began, as always, with a geometric construction.  He imagined a series 

of rulers with square ends sliding along and pushing each other creating a series of 

similar right triangles.  See Figure 2.12a, which is reproduced from the original 1637 

edition of the Geometry, (1952, p. 46).  Let 

� 

Y  be the origin with 

� 

A  and 

� 

B on a circle of 

radius 

� 

a .  As angle 

� 

!XYZ  increases, 

� 

C  moves further out the 

� 

x -axis.  The vertical from 

� 

C  then intersects the line 

� 

XY  at 

� 

D which is still further from the origin.  The triangles 

  

� 

!YBC, !YCD, !YDE,  !YEF,… etc., are all similar, being right triangles all containing the 
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angle 

� 

!XYZ .  Hence we have 
  

� 

YB

YC
=
YC

YD
=
YD

YE
=
YE

YF
=!  etc.   Therefore the sequence of 

lengths   

� 

a =YB,  YC,  YD, YE,  YF ,…  etc.,  form a geometric sequence. 
 

  
  Figure 2.12a 
  

 If one lets 

� 

a =1 and angle

� 

!XYZ = 60° , one forms the sequence 1,2,4,8,16,32, . . . . 

Letting angle 

� 

!XYZ = 45° , one forms the sequence   

� 

 1, 2, 2, 2 2, 4, 4 2, 8, … , which is 

a refinement.  As angle 

� 

!XYZ  decreases, one obtains increasingly dense geometric 

sequences.  In modern terms, the relationship between the constant ratio r and angle 

� 

!XYZ  is: 

� 

sec !XYZ( ) = r .  This relationship is never mentioned in the Geometry.  

Descartes instead emphasized the curves traced by the points 

� 

D, 

� 

F , and 

� 

H , shown in 

Figure 2.12a by the dotted lines.  These curves all have algebraic equations, as opposed 

to the secant, which can only be computed with some infinite process. 

 To solve the original problem of finding 

� 

n  mean proportionals between 

� 

a  and 

� 

b , 

Descartes suggested using the curves drawn by the device.  If two mean proportionals 

are sought, mark off length 

� 

b = YE  on the line 

� 

YZ .  Next construct the circle having 

diameter 

� 

YE , and find its intersection 

� 

D with the first of these curves (see Figure 2.12a).  

Then drop the vertical line from that point 

� 

D to 

� 

YZ  to locate the point 

� 

C .  

� 

YC  and 

� 

YD 
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will then be the desired mean proportionals.  This method uses the curve drawn by 

� 

D 

to determine the appropriate angle of the device so that the point 

� 

E  will fall on any 

specified length 

� 

b .     

 The equations of the curves traced by 

� 

D, 

� 

F , and 

� 

H  can all be found by 

successively substituting into the similarity relations upon which the device was built.  

To find these equations one can proceed as follows (this derivation comes from 

commentaries on Descartes published in 1730 by Claude Rabuel (Descartes, 1952, p.47)).  

Let 

� 

Y = (0,0) , 

� 

D = (x, y) , and let 

� 

YD = z .  Now 

� 

z
2

= x
2

+ y
2, but one also knows that 

� 

z

x
=
x

a
.  

Hence 

� 

z =
x
2

a
, and therefore by substitution one obtains, for the path of point 

� 

D,  the 

equation: 

� 

x
4
= a

2
(x

2
+ y

2
) . 

 Now let 

� 

F = (x, y) , and let 

� 

YF = z .  Now 

� 

z

x
=

x

YD
, hence 

� 

YD =
x
2

z
.  One also knows 

that 

� 

x

YD
=
YD

YC
, so substituting and solving for 

� 

YC  one gets:

� 

YC =
x
3

z
2

.  Lastly one knows 

that 

� 

YD

YC
=
YC

a
, and hence: 

� 

ax
2

z
=
x
6

z
4

.  Solving for 

� 

z  one obtains:

� 

z =
x
4

a

3 .  As before, 

� 

z
2

= x
2

+ y
2, so 

� 

x
8

a2

3 = x
2 

+ y
2 .  Cubing both sides one obtains, for the path of point 

� 

F , 

the equation: 

� 

x
8

= a
2
(x

2
+ y

2
)

3 . 

 In a similar fashion, one can find that an equation of the curve traced by the 

point 

� 

H  is: 

� 

x
12
= a

2
(x

2
+ y

2
)
5 .  Note that all of these curves pass through the point 

� 

A = (a,0) , and that as one moves from one of these curves to the next the degree of the 

equation always increases by four (on both sides of the equation), which is an increase 

of two of Descartes' classes.  The curve traced by 

� 

D is of the second class; the curve 

traced by 

� 

F  is of the fourth class; etc.  To get from any one of these curves to the next 

one involves two perpendicular projections, each of which raises by one the class of the 

curve.  

 Descartes, after stating that, "there is, I believe, no easier method of finding any 

number of mean proportionals, nor one whose demonstration is clearer," (1952, p. 155) 
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goes on to criticize his own construction for using curves of a higher class than is 

necessary.  Finding two mean proportionals, for example, is equivalent to solving a 

cubic equation, and can be accomplished by using only conic sections (first class), while 

the curve traced by 

� 

D is of the second class.  The solution of cubics by intersecting 

conics had been achieved by Omar Khayyam, and was well known in seventeenth 

century Europe (Joseph, 1991, Berggren 1986).  Descartes spent much of the latter part 

of the Geometry discussing the issue of finding curves of minimal class which will solve 

various geometry problems (1952). 

 Descartes expounded an epistemological theory which sought after a universal 

structural science of measure which he called "mathesis universalis" (Lenoir, 1979).  

Fundamental to his program was his classification of curves in geometry.  He wanted to 

expand the repertoire of curves that were allowed in geometry beyond the line and 

circle, but he only wanted to include curves whose construction he considered to be 

"clear and distinct" (Lenoir, 1979).  For Descartes this meant curves which could be 

drawn with linkages and classified by his system according to pairs of algebraic 

degrees.  These curves he called "geometrical" and all others he called "mechanical."   

 This distinction is equivalent to what Leibniz would latter call "algebraic" and 

"transcendental" curves.  Descartes viewed "mechanical" (i.e. transcendental) curves as 

involving some combination of incommensurable actions.  Examples that he specifically 

mentioned are the spiral, quadratrix, and cycloid.  These curves all involve a 

combination of rotation and linear motion that can not be connected and regulated by 

some linkage.  The drawing of such curves involves rolling a wheel or the unwinding of 

string from a circle.   

 This is not to say that Descartes did not address himself to problems concerning 

these curves.  I shall mention some of his thoughts on the cycloid in the next section.  I 

turn now to logarithmic curves.  Two years after the publication of the Geometry, 

Descartes addressed a problem that was sent to him by De Beaune, which asked for the 
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construction of a curve in a skewed system where the ratios of the subtangents to the 

ordinates are everywhere equal to the ratio of the ordinates to a fixed segment, i.e. a 

type of logarithmic curve; De Beaune's requirement being, in modern terms, a first 

order differential equation (Lenoir, 1979).  Descartes generated a method for point-wise 

approximation of this curve, and also provided a detailed study of how the curve could 

be drawn by a combination of motions with particular progressions of speeds.  He then 

stated: 
 

I suspect that these two movements are incommensurable to such 
an extent that it will never be possible for one to regulate the 
other exactly, and thus this curve is one of those which I excluded 
from my Geometry as being mechanical; hence I am not surprised 
that I have not been able to solve the problem in any way other 
than I have given here, for it is not a geometrical line.   
(Descartes, quoted in Lenoir, 1979, p. 362)28 

 

 I will now proceed to construct point-wise approximations of logarithmic curves, 

but I will not follow the particular example discussed in Descartes' letters to De Beaune.  

That example turns out to have been  a transformation of a logarithm  added to a linear 

function.  I will instead construct standard logarithmic curves using both the device of 

Descartes' shown in Figure 2.12a, together with the original conception of logarithms by 

John Napier, as pairings of geometric and arithmetic sequences (Smith & Confrey, 1994; 

Edwards, 1979; Boyer, 1968). 

 Although the theme of this entire thesis is curve drawing actions, this 

construction depends on a covariational view of functions (Confrey & Smith, 1995).  

This is essentially a view from tables of data that looks for methods to simultaneously 

                                                 
28  For a fascinating social and philosophical analysis of why Descartes would adopt such an 
attitude see the article by Lenoir (1979).  It certainly had nothing to do with his ability to contend 
with such problems.  
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extend or interpolate values in both columns rather than looking for a rule which 

calculates between different columns.  This approach to functions was central in the 

thinking of Leibniz (Child, 1929), and has been shown to be important in the thinking of 

students (Rizzuti, 1991; Confrey, 1994a). 

 Napier and others in the early seventeenth century made tables of logarithms by 

placing arithmetic sequence alongside geometric sequences.  They devised various 

ways to make these tables dense (Edwards, 1979).  These early approaches to 

logarithms were entirely tabular and calculational, and did not involve curves or 

graphs.  When Descartes constructed a curve as a solution to De Beaune's problem, he 

did not view the curve as a logarithm.  A more flexible view that could go back and 

forth between curves, graphs and equations did not begin to evolve until the end of the 

seventeenth century, especially with respect to transcendental curves whose general 

coordinates could only be found using series expansions (Dennis & Confrey, 1993).    

 The following construction resembles a graph in the sense that points are being 

plotted, rather than continuously drawn.  However, the points are plotted, not from 

numerical inputs or equations, but instead from a pair of continuous geometric actions.  

The numerical coordinates of the points come from after the fact measurements.  The 

distinctions between curves, graphs, and functions are both poignant and slightly 

ambiguous here.  The analysis of the curves and their tangents will follow in the system 

of Leibniz (Section 2.3), but the covariational construction of the points bends the 

concept in a slightly different direction.       

 The primary aim here is to provide modern students with a hands on way to 

build logarithmic and exponential curves through a series of simple geometric 

constructions using Geometer's Sketchpad.  From the standpoint of covariation there is 

little difference between exponentials and logarithms.  The pair of actions which builds 

one also builds the other.  I have constructed the following curves as logarithms, but the 
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same construction could be viewed as exponential by simply repositioning the 

constructive actions. 

 I start by building a simulation of Descartes' device for the construction of 

geometric sequences with 

� 

a =1 (see Figure 2.12b).  Let 

� 

O  be the origin and let 

� 

H  be any 

point on the unit circle.  By moving 

� 

H  around the circle, the distances of the labeled 

points from the origin will form geometric sequences with any common ratio.   That is if 

� 

r =OG
1
, then 

� 

r
2

=OH
2
,  r

3
=OG

3
,  r

4
=OH

4
,etc.     

 

 
    Figure 2.12b 
 

 This construction can also be extended to the interior of the unit circle to obtain 

segments whose lengths are the negative powers of 

� 

r .  Once again, as with the 

preceding construction, the odd powers of 

� 

r  are on the horizontal while the even 

powers of 

� 

r  are on the line 

� 

OH .  This can be seen, as before, by considering the series of 

similar triangles with common vertex 

� 

O .  See Figure 2.12c. 
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    Figure 2.12c 
 

 In order to get the entire geometric sequence on one line, I will now translate the 

lengths marked on the line 

� 

OH  down to the horizontal by using circles centered at 

� 

O .  

See Figure 2.12d.  Thus I now have a geometric sequence, laid out on the 

� 

x -axis, whose 

common ratio or density can be varied as the point 

� 

H  is rotated.  The point where the 

circle through 

� 

H
2
 intersects the 

� 

x -axis I will name 

� 

G
2
, likewise for 

� 

H
4
,  H

6
,  etc.  The 

points on the 

� 

x -axis that are inside the unit circle I will call   

� 

G
-1
,  G

-2
,  … etc. where the 

subscripts correspond to the powers of 

� 

r  which represent their distances from 

� 

O .  
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    Figure 2.12d 
 

 In order to construct logarithmic curves, we must now construct an arithmetic 

sequence 

� 

A
i
 on the 

� 

y -axis with a variable common difference.  This can be achieved in a 

variety of ways.  The common difference 

� 

d  in the arithmetic sequence will be adjusted 

here by moving 

� 

A
10

 along the 

� 

y -axis.  The points in the geometric sequence are then 

each vertically translated by  lengths corresponding to consecutive points in the 

arithmetic sequence, thus creating the points 

� 

G
i
,  A

i
( ) .   These new points then lie on the 

graph of a logarithm.  I then connect the new points by line segments (bold in Figure 

2.12e) to approximate a log curve. Using the meters available in Geometer's Sketchpad, 

one can continuously monitor the lengths in both the sequences, and hence the 

coordinates of the points 

� 

G
i
,  A

i
( )  on the log curve.  Some of the construction lines have 

been hidden for greater visual clarity. 
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  Figure 2.12e 
 

 This construction yields an adjustable curve.  By moving 

� 

H  around the unit 

circle, or 

� 

A
10

 along the 

� 

y -axis, one can map any geometric sequence against any 

arithmetic sequence.  In Figure 2.12e, the point 

� 

H  is adjusted so that 

� 

G
4
= 2 , and the 

point 

� 

A
10

 is adjusted so that 

� 

A
4
=1.  Hence this curve follows a graph of the log base 2.  

By readjusting 

� 

A
10

 so that 

� 

A
8
=1 the curve shifts dynamically to become a graph of the 

log base 4.  See Figure 2.12f. 
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  Figure 2.12f 
 

 By readjusting the point 

� 

H  so that 

� 

G
8
= 3, one obtains a curve that follows the 

graph of the log base 3.  Since the monitors are measuring to the hundredth of an inch, 

which is smaller than a pixel, it is not always possible to get exactly the numbers 

desired (e.g. 

� 

G
8
 reads 2.96 in Fig. 8).  See Figure 2.12g.  One can get around the pixel 

problem by using the appropriate rescaling window commands, but for a first 

experience this would decrease the sense of a direct physical approach, which I feel is 

important for students. 
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    Figure 2.12g 
 

 It is fascinating to watch these curves flex and bend as the arithmetic and 

geometric sequences are manipulated.  Even when the points are quite broadly spaced, 

as in Figure 2.12e, the graphs look very smoothly curved, even though they are made 

up of line segments.  When the angle of 

� 

H  is increased the geometric sequence spreads 

out rapidly off of the screen.  By scanning far to the right it is instructive to see just how 

incredibly flat log curves become. 

 When the arithmetic and geometric sequences are both spread out the graphs can 

eventually become "chunky" since the points are being connected with line segments.  

However, by manipulating both sequences it is possible to increase the density of points 

on any particular log graph without changing the base.  For example, we could create 

another curve that follows the graph of the log base 2 by setting 

� 

A
8
=1 and 

� 

G
8
= 2  (see 

Figure 2.12h).  This is the same curve as that in Figure 2.12e, but with a much higher 
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density of constructed points.  Descartes' device allows us to geometrically carry out the 

calculational aims of Napier.  Geometric sequences can be built as densely as one 

desires, and paired against any arithmetic sequence. 
 

  
         Figure 2.12h 
 

 After watching these log curves shift and bend dynamically, one can begin to 

look carefully at the slopes between points on the curves.  Several interesting patterns 

come to light.29  Suppose one wants to use the slopes between constructed points to 

approximate the tangent slope at a point, say for example at (1,0).  It is visually 

apparent that using the point (1,0) in the calculation is not the best thing to do.  The 

slope between the nearest points to the right and left gives a better approximation of the 

                                                 
29  Thanks to David Henderson for his probing questions on this point. 
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tangent slope.  This is true for most curves, not just the logarithm.30  Here, at (1,0), I 

want to calculate the secant slope between 

� 

G
-1
 and 

� 

G
1.   Letting 

� 

r  equal the common 

ratio of the geometric sequence, and 

� 

d  equal the common difference of the arithmetic 

sequence, one calculates the general slope at (1,0) as: 
 

  

� 

slope at (1,0) =  
2d

r !
1

r

=  
2rd

r
2
!1

=  k.   

 Suppose one now approximates the slope at any other point on the constructed 

curve.  This approximate slope at 

� 

(G
n
,  A

n
) = (r

n
,  nd) , is found by computing the secant 

slope between 

� 

G
n-1

 and 

� 

G
n+1

.  The calculation yields:  
     

 

� 

slope at (G
n
,  A

n
) =

2d

r
n+1

! r
n!1 =

1

r
n
"

2rd

r
2
!1

=
k

r
n

.  
   

Here one has the approximate tangent slope at a point on a logarithm written as the 

inverse function times a constant.  The constant 

� 

k  is the slope of the curve at (1,0).  Of 

course these slopes are all approximations, but once the slope at (1,0) is approximated it 

can be divided by the 

� 

x -coordinate at any other point to get the corresponding slope 

approximation at that point.  By making the constructed points on the curve denser the 

approximations all improve together at the same rate.  Thus the essential derivative 

property of logarithms is revealed without recourse to the usual formalisms of calculus.  

In fact, even more is being displayed here than the usual derivative of a logarithm.  One 

sees that the all the slope approximations converge uniformly as the density of the 

constructed points is increased. 

 This constant 

� 

k  can be seen geometrically in another way.  If we view these 

curves and tangent constructions using the vertical axis (i.e. as exponential curves), then 

                                                 
30  It is strange that when the derivative is developed in calculus classes, it is defined using secant 
slopes from the point in question, rather than around the point.  It would seem that nobody is 
directly interested in secant slope approximations, except as an algebraic device from which to 
define a limit.  The practical geometry of secant slopes is ignored. 
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we find that the subtangent (see Section 2.3) is constant for all points, and is always 

equal to 

� 

k , the slope at (1,0).  This can be established algebraically from the previous 

discussion, but it is nice to see it geometrically on the curve and verify it using the 

meters on Geometer's Sketchpad.  This is done in Figure 2.12i, for two different points on 

the log base 3 curve.  The tangent lines and slope are approximated by using the points 

adjacent to the one under consideration, and the accuracy is quite good (a calculator 

gives 

� 

k = .910). 
 

 
    Figure 2.12i  
 

   This constant subtangent property was at the heart of Descartes' discussion of De 

Beaune's curve.  The constant subtangent was the hallmark by which logarithmic and 

exponential curves were recognized during the seventeenth century (Lenoir, 1979; 

Arnol'd 1990).  One way to think of this property is to imagine using Newton's method 

to search for a root an exponential curve.  The method will march off to infinity at a 

constant arithmetical rate, where the size of the steps will be the constant 

� 

k . 

 Compare this constant subtangent property of exponential curves to the 

properties of parabolas discussed in Section 2.4.  For the parabola, the subnormal 

remained constant while the subtangents got very large.  For the log curves just the 

opposite is the case.  In standard modern functional language, the comparison would 

be between exponential functions and multiples of the square root function.  
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 In order to construct the natural logarithm, one wants the slope at (1,0) to be 1.  

This is the property from which Euler first derived the number "

� 

e " (Euler, 1988).  

Returning to the construction, with a meter which monitors the approximate secant 

slope at (1,0), I now rotate 

� 

H  until the slope meter reads as close to 1 as possible.  This 

constructs a close approximation to the graph of the natural logarithm.  The 

approximate slope at any point on the curve is the inverse of its 

� 

x -coordinate.  Note 

that since 

� 

A
5
=1, the value of 

� 

G
5
 is approximately the number "

� 

e ".  See Figure 2.12j. 
 

 
   Figure 2.12j 
  

 This geometric construction of points on log curves achieves the goals set out by 

Napier.  It allows one to construct logarithms (and also exponents) as densely as one 

desires.  Of course Napier achieved these goals algebraically (Edwards, 1979), and 

throughout the seventeenth century increasingly subtle table calculations were 
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developed, e.g. those of Wallis (Dennis & Confrey, 1993).  The story of these 

calculational techniques is a very important one leading eventually to Newton's 

development of binomial expansions for fractional powers (Newton, 1967).  Euler 

routinely used Newton's techniques to calculate log tables to over 20 decimal places 

(Euler, 1988).  Theoretically, the geometric construction has unlimited accuracy, but 

directly using the meters in the software, Geometer's Sketchpad , one is limited to at most 

three decimal places.31  Nevertheless, in order to discuss logarithms from the standpoint 

of an epistemology of multiple representations (Confrey & Smith 1995), a dynamic 

geometrical construction of the curves is very illuminating. 

 I ask the reader to compare this investigation of logarithms with the approaches 

more frequently taken in classrooms.  Many students are introduced to logarithms in a 

formal algebraic way, with no references to geometry or to table construction.  Such 

students often have no method for geometrically or numerically constructing, even a 

square root.  Such an approach leads, at best, only to a superficial understanding of the 

grammar of logarithmic notation.  There is no dialogue at all. 

 Another approach that is taken is to see logarithms as the accumulated area 

under a hyperbola (usually 

� 

y =1 / x ).  This approach can provide many fascinating 

insights that connect logarithms to both geometry and to the numerical construction of 

tables.  The study of hyperbolic area accumulation was fundamental in the early work 

of Newton, as he extended the table interpolations of John Wallis and created his first 

infinite binomial expansions (Dennis & Confrey, 1993; Edwards, 1979).  Although this 

approach can create a fascinating and balanced dialogue, it is not usually taken with 

students until they are already involved with calculus.  The fundamental theorem of 

calculus, for example, is usually invoked to show that the hyperbolic area function must 

have a derivative of 

� 

1 / x . 
                                                 
31  By changing the scale in the meters by division unlimited accuracy can be achieved geometric 
ally. 
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 The approach that I have described here is strictly pre-calculus.  It involves only 

a systematic use of similar triangles, in a hands-on setting that is both visual, physical 

and geometric.  It provides a specific form of grounded activity that allows to students 

to manipulate, extend, and interpolate both logarithms and continuous exponents.  

Rather than using calculus to create a balanced dialogue, this approach uses the 

dialogue to achieve some of the results of calculus in a very simple setting.  It highlights 

the power of iterated geometric similarity (Confrey, 1994a), and provides another 

independent experience which can be used to validate the linguistic construction of 

calculus.   

 Reading this section can not truly convey the feeling one gets while physically 

manipulating the curves.  The investigation of the slopes of log curves depends 

logically only on the properties of a table which maps a geometric sequence against an 

arithmetic sequence, but I did not notice this piece of algebra until many fluctuating 

examples of log curves had appeared on the screen.  The geometry can heighten the 

intuition so that the appropriate question emerges.  The power of suggestion should not 

be underestimated.  The association of rotation around the unit circle with the building 

of logarithms is a wonderful foreshadowing of the connections between these functions 

and the trigonometric functions when extended to the complex numbers (Euler, 1988). 
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2.13  Roberval: Cycloids and Sine Curves 

 

 The circle is the curve with which we all have the most experience.  It is an 

ancient symbol and a cultural icon in most human societies.  It is also the one curve 

whose area, tangents, and arclengths are discussed in our mathematics curriculum 

without the use of calculus, and indeed long before students approach calculus.  This 

discussion can take place, because most people have a lot of experience with circles, and 

know several ways to generate them.  Pascal thought that, second only to the circle, the 

curve that he saw most in daily life was the cycloid (Bishop, 1936).  Perhaps the large 

and slowly moving carriage wheels of the seventeenth century were more easily 

observed than those of our modern automobile, but the cycloid is still a curve that is 

readily generated and one in which many students of all ages easily take an interest.  In 

a variety of settings, when I have mentioned, for example, the path of an ant riding on 

the side of a bicycle tire, some immediate interest has been sparked (see Figure 2.13a). 
 

     
          Figure 2.13a 
 

 The cycloid played an important role in the thinking of the seventeenth century.  

It was used in architecture and engineering (e.g. Wren's arches, and Huygens' clocks).  

As analytic methods were developed, their language was always tested against known 

curves, and the cycloid was the preeminent example for such testing (Whitman, 1946).  

Galileo, Descartes, Pascal, Fermat, Roberval, Newton, Leibniz and the Bernoullis, as 

well as the architect, Christopher Wren, all wrote on various aspects of the cycloid.  
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Besides the fact that it can be easily drawn, what makes this curve an excellent example 

for this discussion is that its areas, tangents, and arc-lengths were all known, from the 

geometry of its generation, many years before Leibniz first wrote an equation for the 

curve in 1686 (Whitman, 1946).  

 Some early observers thought that perhaps the cycloid was another circle of a 

larger radius than the wheel which generated it.  Some careful observation will dispel 

this belief; for example at the cusps where the traced point touches the ground the 

tangents are already vertical, but this section of the curve is clearly not a half circle.   

 Galileo used the curve as a design for the arches of bridges.  For this reason he 

sought to determine the area under one arch of a cycloid.  He approached the problem 

empirically by cutting the shape out of a uniform sheet of material and weighing it.  He 

found that the shape weighed the same as three circular plates of the same material cut 

with the radius of the wheel used to draw the curve.  Galileo tried this experiment 

repeatedly and with care, and found again that the ratio of the area of the cycloidal arch 

to that of the wheel which drew it was three to one.  He suspected however that the 

ratio must be incommensurable, probably involving π , and abandoned further 

attempts to more accurately determine the ratio (3:1 is correct as we shall see).   Galileo 

gave the name "cycloid" to the curve, although it has also been known as a "roulette" 

and a "trochoid"  (Struik, 1969; Whitman, 1946). 

 A French mathematician, Gilles Personne de Roberval (1602 - 1675), wrote a tract 

in 1634 that included both the area and tangent properties of the cycloid (Struik, 1969).  

This work was done just before the publication of Descartes' Geometry, and several 

important issues are raised by Roberval's mechanical methods which involve no 

algebra.  He began by imagining a point 

� 

P  on a wheel drawing a cycloid, and at the 

same time observing a second point 

� 

Q  drawing a second curve which he called the 

"companion of the cycloid."  This second point 

� 

Q  has, at all times, the same elevation off 

the ground as 

� 

P , but always rides on a vertical diameter of the wheel. 

� 

Q  can be thought 
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of as the projection of 

� 

P  onto the vertical diameter of the wheel.  See Figure 2.13b which 

shows both curves traced by Geometer's Sketchpad. 

� 

Q  will move forward at a constant 

speed while monitoring the height of 

� 

P .  The path of 

� 

Q  is, therefore, what is now know 

as a sine or cosine curve.  
 

    
    Figure 2.13b 
      

 Points 

� 

P  and 

� 

Q  start together at

� 

A , and come together again at 

� 

S .  In between 

the distance between 

� 

P  and 

� 

Q  takes on all the different horizontal segments that occur 

in half of the circle (i.e. all of the horizontal line segments 

� 

PQ  that form the shading).  

Thinking of the shaded area between the curves from 

� 

A  to 

� 

S  as a deck of cards, if one 

pushes them against a vertical line, they will form a half circle.  Hence the entire shaded 

area in figure 2.13b is equal to the area of the circle.  This reasoning employs what is 

known as the method of Cavalieri, also known as the method of indivisibles.  

 Looking at the symmetry of the companion curve traced by 

� 

Q  between 

� 

A  and 

� 

S  

told Roberval that the area under that curve is one half the area of the entire rectangle 

� 

ABVU .  The entire rectangle has dimensions equal to the diameter and the 

circumference of the wheel, and is therefore equal to four times the area of the wheel 

(i.e. 

� 

(2! r)(2r) = 4(! r
2
) ).  The area under the cycloid is the shaded area plus the area 

under the companion curve, and therefore equals three times the area of the wheel that 

generated the curves, just as Galileo's weighing experiments had indicated.   
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 Another way of stating this result is to say that the area of the cycloidal arch is 

always 

� 

3 / 4  of the rectangle that contains it.  Other mathematicians of the time (e.g. 

Wallis and Newton) would have called three quarters the characteristic ratio of the 

curve (Dennis & Confrey, 1993).  This tradition goes back to ancient mathematics, like 

the result of Archimedes that says that if the curve under consideration was any 

downward parabola then the area under the curve would be 

� 

2 / 3  of the rectangle 

containing it.  

 Roberval obtained tangents to the cycloid by thinking of the motion of point 

� 

P  

as two separate motions, one rotational and the other forward (Struik, 1969).  Since the 

wheel is rolling smoothly without slipping the rotational speed of the wheel must equal 

its forward speed (see Figure 2.13c).  One can then construct the tangent as the sum of 

these two equal velocities.  Thus Roberval constructed the tangent at 

� 

P  by considering 

a tangent to the circle at 

� 

P  (

� 

PH=rotational velocity), and a horizontal of the same 

length (

� 

PQ=forward velocity), and then forming the parallelogram on these two 

segments, and then drawing the diagonal 

� 

PV .  Since 

� 

PH = PQ , 

� 

PV  will bisect the angle 

� 

!HPQ .32 
 

                                                 
32  Roberval applied this same method of finding tangents by components to the parabola and the 
ellipse.  For example a point  on a parabola is increasing (or decreasing) its distance from the 
focus at the same rate as it is increasing (or decreasing)  its distance from the directrix.  Bisecting 
the angle, or drawing the diagonal between appropriate equal segments will yield the tangent.  
This is nearly the same tangent construction as van Schooten's (see Section 2.4).  
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    Figure 2.13c 
                     

 Since 

� 

PH  is perpendicular to the radius 

� 

CP , and 

� 

!CPT =!CTP  (isosceles 

triangle), and 

� 

!TPQ = 90° , then 

� 

!HPV = 90° " !CPT =!TPQ .  Hence the bisector 

� 

PV  of 

angle 

� 

!HPQ  lies along the line 

� 

PT .  One can deduce from this geometry that this 

tangent 

� 

PV  to the cycloid at 

� 

P  always points at the top of the rolling circle 

� 

T .  Look 

back at Figure 2.13b to see the tangent 

� 

PT  in another position.  Thus the ant on the 

bicycle wheel is always moving directly towards or away from the top of the wheel.  

 One can also deduce from Figure 2.13c that the tangent to the cycloid is always 

perpendicular to the line 

� 

PO  which connects 

� 

P  to the point of contact of the wheel with 

the ground.  In 1638, Descartes saw this directly by approaching the tangent problem in 

a different way.  Instead of a circular wheel, he started by imagining a rolling convex 

polygon (e.g. a square wheel).  Such a figure pivots on one vertex until a side comes 

down flat on the ground and then it shifts to pivot on the next vertex.  Thus any point 

� 

P , moving on a rolling polygon, will have as its path a series of circular arcs of different 

radii.  While the polygon is pivoting on any one vertex, the path of that point 

� 

P  will be 

a circle centered at that vertex, and thus its tangent will be perpendicular to the line 

connecting 

� 

P  to that vertex (i.e. the point of contact with the ground).  Descartes then 

imagined regular polygons with an increasing number of sides, becoming closer and 
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closer to a circle.  From this he deduced that the tangents at each point 

� 

P  on a cycloid 

must always be perpendicular to the segment 

� 

PO  which connects that point 

� 

P  with the 

point of contact 

� 

O  of the wheel with the ground (Whitman, 1946).    

 The approaches of Roberval and Descartes to this problem display their different 

conceptions of mathematics.  Roberval thought in terms of engineering and mechanics.  

He saw the cycloid as two combined motions and resolved them using the 

parallelogram law, in the manner of Galileo.  Descartes' approach is more geometrical, 

and involves seeing a circle as a limit of polygons (a ancient view taken, for example, by 

Archimedes).  Descartes called the cycloid one of the "mechanical" curves that he 

refused to admit to his Geometry, because the regulation of its motion was not "clear and 

distinct"  (i.e. it involved matched simultaneous rotation and forward motion).     

  If a wheel rolls at a constant rate, both of these approaches will yield not only the 

tangent to the path of motion at each point (i.e. the direction of velocity), but also the 

magnitude of the velocity vector as well.  With Roberval's construction, if the wheel is 

rolling at a constant rate, then the horizontal velocity has constant magnitude, and by 

adding it to a vector tangent to the circle, and of the same magnitude as the horizontal 

velocity; one can, at all points, construct the cycloidal velocity vector.  Using Descartes' 

conception of polygonal rolling motion, and thinking of the rotational rate at each 

pivotal contact point as constant, one can see that the magnitude of the velocity vector 

is proportional to the distance of the moving point from the contact point.  This will 

remain true as the polygons approach the circle.   

 One sees, in either case, that the velocity is zero at the cusp of the cycloid when 

the point 

� 

P  touches the ground, and twice the forward velocity of the wheel when 

� 

P  is 

at the top of the wheel.  Using Roberval's conception, this can be nicely animated using 

Geometer's Sketchpad (see Figure 2.13d).  At the point of contact with the ground the two 

motions (rotational and forward) cancel each other, and the velocity vector is zero.  At 
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the top they are both in same direction and the velocity is at its maximum of double the 

constant forward speed of the wheel. 
 

        
    Figure 2.13d 
       

 As the seventeenth century progressed interest in the cycloid intensified and a 

variety of mathematical, physical, and engineering questions were investigated by 

Pascal, Huygens, Leibniz, Bernoulli and others (Arnol'd, 1990; Whitman, 1946; 

Whiteside, 1961; Smith, 1959).  I will present one more investigation of the cycloid that 

gives the arclength of any portion of the curve in a simple geometric form.  I first found 

this "rectification" (i.e. the finding of a straight segment equal to a given arclength) in 

the early notebooks of Newton from 1668 (1968, p. 193), but it also appears in a tract by 

John Wallis of 1659 (1972, p. 536).  It was attributed by Newton to the famous London 

architect Sir Christopher Wren from a tract written in 1658 (Newton, 1968; Whitman, 

1946).  Like Galileo, Wren saw the cycloidal arch as well suited for architecture.   

 We have already seen that for any point on the rim of a rolling wheel, the 

segment that connects the point with the top of the wheel is tangent to its path of 

motion.  Wren showed that the length of this segment is always exactly one half of the 

arclength between the point and the top of the cycloidal arch on which it is moving.  

That is to say in Figure 2.13e, the length of segment 

� 

QT  is exactly on half the arclength 

between 

� 

P  and

� 

T .               
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       Figure 2.13e 
 

 

� 

QT  is parallel to the tangent at

� 

P .  Wren, like others in his time, imagined a curve 

to be made up of small line segments.  Wren then imagined a series of points along the 

curve.  Lines parallel to their tangents are shown radiating from 

� 

T , and a series of 

circles, centered at 

� 

T , pass through the intersection of these lines with the circle 

� 

TQO .  

Each of the small darkened line segments is equal to a small tangent segment to the 

curve.  Figure 2.13e then shows that the segment 

� 

QT  is the sum of pieces each of which 

are half of one of these tangential pieces of arclength.  Thus twice 

� 

QT  must equal the 

entire arclength from 

� 

P  to 

� 

T .   

 I find this theorem startling in its simplicity, especially after having calculated 

arclengths using the integral formulas from a calculus book.  Wren presented his 

argument in the turgid formal Greek style known as the "method of exhaustion," but 

Newton provided only slightly more than what I have already said (1968, p. 193).  The 

use of such methods was becoming quite natural to Newton (and also to Leibniz as we 

shall see in the next section).   

 This arclength property implies that the length of one entire cycloidal arch is 

exactly four times the diameter of the wheel which generated the curve.  The 
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circumference of the wheel is 

� 

!  ("  3.14) times the diameter.  For a point to traverse one 

cycloidal arch the wheel must revolve once.  The extra distance that is added by the 

forward motion stretches the path of motion from π  diameters to  4 diameters.  It is 

interesting to think back to the ant on the rim of a wheel.  On the upswing, her motion 

is always headed straight for the top of the wheel, but the length of her cycloidal path to 

the top will always be twice her distance from the top at any given moment.  

 I would ask the reader to reflect here on the things which can be known about 

curves solely from considering the actions which produce them.  An equation for the 

cycloid was not written down until after all of the above discussions.  When I think of 

how, in the past, I have presented this curve in my calculus classes using the standard 

parametric equations, I feel that both I and my students learned very little.  In the 

secondary curriculum, cycloids are rarely mentioned, because their equations are 

considered too difficult.   

 What is governing our choice of curriculum?  It would seem to be regulated by 

algebraic convenience.  Students are asked to consider many curves that I have never 

seen in daily life, simply because their equations are tractable.  Analytic methods are 

powerful tools, but letting the tools govern the subjects of our thoughts can only lead to 

tedious and unnatural formalism.  As Leibniz labored to create the language and 

notation that we call calculus, he had to test this language to see that it was consistent 

with what was known about areas, tangents, and arclengths.  Curves such as the 

cycloid were used as critical experiments to test the validity of linguistic constructions.  

Leibniz first wrote an equation for the cycloid in 1686, and then used it to test his 

evolving notations (Whitman, 1946).   

 Leibniz wanted to create a universal language which was capable of expressing 

all known results about areas, tangents, arclengths, and other quantities.  Newton 

accused Leibniz of plagiarism, because he never came up with any previously unknown 

answers to questions about areas, volumes,  tangents, or arclengths.  Newton 
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misunderstood the intention of Leibniz.  He was not a plagiarist; he was a linguist.  He 

largely succeeded in his quest for a universal language capable of expressing all of the 

known results from the geometry of his day.   

 It is this sense of language as a human construction, evolving from experiences, 

and fitted to certain purposes, that I want suggest should be brought into the 

mathematics classroom.  By eliminating the discussion of curves like the cycloid, the 

grounded activity which justifies language construction is taken away from students.  

They then have no critical experiments upon which to test the consistency and validity 

of the formalisms they learn.  They learn only about the nature of representations that 

refer to themselves in an endless hall of mirrors.  Students often see mathematics as 

perfect and unquestionable, because they have only experienced it within a self 

referential frame.  Right at the very beginning of the scientific revolution, Pascal 

objected to this general linguistic trend in modern thought.  Speaking theologically he 

said, "Nature possesses forms of perfection in order to show that it is an image of God; 

and faults to show that it is only an image" (Pascal, 1962, #262).  I will take the liberty to  

paraphrase him and say that: Mathematics possesses forms of perfection in order to 

show that it is an image of Nature; and faults to show that it is only an image.  
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2.14  Pascal and Leibniz: Sines, Circles, and Transmutations 

 The title of the last section promised some discussion of sine curves.  In 

Roberval's construction a sine curve was drawn and used to find the area of the 

cycloidal arch (see Figure 2.13b), but Roberval called this curve the "companion of the 

cycloid."  He did not see this curve as a graph of a sine or cosine, and neither did any of 

his contemporaries.  They did discuss sines and cosines, however, and it is important to 

understand the conceptual point of view that was then standard.  Before I present my 

last example of curve drawing from Leibniz, I must also return to some of the issues 

raised in section 2.3.  Leibniz's use of the characteristic triangle (Figure 2.3b) was 

directly inspired by the work of Pascal concerning sines. 

 Trigonometric functions were not defined using ratios, or the unit circle, until the 

textbooks of Euler were published in 1748 (Euler, 1988).  Both Ptolemy and Arabic 

astronomers made detailed tables of the lengths of chords subtended by circular arcs 

(Katz, 1993).  That is, given two points, 

� 

A  and

� 

B, on a circle, to find the length of the line 

segment 

� 

AB .  Such tables were usually made for a circle of a given (large) radius, and 

then scaled for use in other settings.  It was also found useful by Arabic astronomers to 

have tables of half chords, and such tables became known in Latin as tables of "sines." 33  

Since the perpendicular bisector of any chord passes through the center of the circle, 

half chords on the unit circle are the same as our sines, but I want to stress that 

trigonometric quantities were seen as lengths.  Tangents were seen as lengths marked 

on a tangent line.  Secants were the lengths from the center of the circle to the tangent 

line.  Etc.  In Figure 2.14a, 

� 

PB  is a sine, 

� 

CD  is a tangent, and 

� 

AD  is a secant, regardless 

of what parameter is used to index these lengths. 
 

                                                 
33  The Arabic word for "half chord" closely resembled the Arabic word for a bay of water.   
Early Latin translators confused the two and translated the Arabic "half chord" into the Latin 
word "sinus" meaning bay or cavity. 
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      Figure 2.14a 
     

 The parameter from which these trigonometric lengths were indexed was 

implied by usage, but not always stated explicitly.  Some form of systematic equal 

division was used to make any particular table.  As analytic geometry evolved, 

parameters had to be stated more clearly.  For example, in Figure 2.13a, is 

� 

PB  a "sine" or 

an "ordinate" to the circle with respect to the axis 

� 

AC ?  Pascal and Roberval were quite 

clear on this point.  If the line 

� 

AC  is divided into equal increments, and then 

perpendiculars are erected to the circle, then those segments are "ordinates."  On the 

other hand, if the circle is divided into equal pieces of arclength, and then 

perpendicular segments are dropped to the axis, then those segments are "sines" 

(Struik, 1969).  See Figure 2.14b, where on the left the diameter is divided into sixteen 

equal segments, and on the right the half circle is divided into sixteen equal arclengths.  

Pascal did not restrict this terminology to the circle, but used it for any curve .  
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       Figure 2.14b 
 

 In any given situation, the size of the increment was determined by the nature of 

the problem at hand, and the level of accuracy that was desired or possible.  The 

smallest increment being used was most often taken as the unit of measurement for a 

problem.  In the early work of Leibniz, 

� 

dx =1 represents these small increments, and 

there is no distinction between 

� 

dy  and 

� 

dy dx .  Leibniz did not distinguish between 

� 

dx  

and 

� 

!x ; he used only 

� 

dx , and it meant simply the difference of the quantity 

� 

x .  The 

ratio 

� 

dy dx  entered into his later work, so that he could discuss rates using units of 

measurement other than the smallest increment 

� 

dx  (Child, 1920). 

 In 1659 Pascal published his work "On the sines of a quadrant of a circle" in 

which he established a series of propositions which are algebraically (but not 

conceptually) equivalent to integrating all of the integer powers of the sine function 

(Struik, 1969).  I will describe only his first example.  Figure 2.14c shows an increment of 

circular arclength 

� 

DF , together with a segment 

� 

QR  tangent at the midpoint 

� 

P . 

� 

CP  and 

� 

CA  are radii of the circle, and 

� 

QK , 

� 

PB , and 

� 

RL  are all perpendicular to 

� 

CA .  Since 

� 

QR  

is perpendicular to 

� 

PC ,  triangles 

� 

!ERQ and 

� 

!BPC  are similar.  Hence 

� 

PB !QR = ER !CP .      
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    Figure 2.14c 
 

 Imagine any arc (

� 

! 90°) of a circle divided up into equal pieces of arclength such 

that it is impossible to distinguish those arclength increments from the corresponding 

tangent line segments.  Even in Figure 2.14c they are very close (

� 

QR =1.40  in.; 

� 

arc DF =1.44 in.).  Using his arclength increment 

� 

QR  as his unit, Pascal then concluded, 

from the similarity statement above, that if one sums up the sines of the increments 

(

� 

PB = PB !QR), then the sum is always equal to the portion of the horizontal axis 

between the first and last of the sines, multiplied by the radius of the circle; i.e. the sum 

of the changes 

� 

ER  in the cosine, times the radius 

� 

CP  (Struik, 1969).   

 One could transform this statement in the later notation of Leibniz (i.e. modern 

calculus) by a change of unit.  Using the radius of the circle 

� 

CP  as a unit (rather than 

than the arclength increment 

� 

QR ), and using 

� 

! ��as  an arclength parameter (i.e. 

radians), then �

� 

QR = d!, ER =KL = d(cos!) �� an d the similarity statement 

� 

PB !QR = ER !CP  becomes 

� 

sin! " d! = d(cos!) �  S umming this one obtains: 

� 

sin! " d! = cosa # cosb
a

b

$ . Leibniz created the modern integral symbol as an “s” for 

summation. Just as he did not separate the concepts of 

� 

dx  and 

� 

!x , he did not separate 

integration (

� 

! ) from summation (

� 

! ). Thinking geometrically, the issue of minus 
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signs does not arise, because 

� 

ER  (the change in cosine) is a geometric line segment. The 

arc can be measured either clockwise or counterclockwise. 

 Pascal made a whole series of increasingly complex arguments like the one 

above.  Transformed into Leibnizian notation, they amount to a series of integrations 

for integer powers of the sine, solved by changes of variable.  In the work of Pascal, 

however, all of these changes of variable were done geometrically, using similarity and 

projection.  Two themes from this work deeply affected Leibniz, and became central in 

his thinking (Child, 1920).  First, the small characteristic triangles along a curve can be 

analyzed by finding large ones which are similar to them (see Section 2.3).  In the case 

just mentioned, triangle 

� 

!ERQ is the characteristic triangle which is similar to the large 

triangle 

� 

!BPC .  Second, there are useful connections between tangents and areas that 

can be exploited through the finding of such similar triangles.  

 A few years before his death in 1716, Leibniz wrote "The history of the origins of 

differential calculus"  (Child, 1920).  This essay centered on two themes.  First, that his 

notation of differences and summations was developed from his study of tables of 

numbers, and the patterns that he found there.  Second, that this notation from tables 

could be consistently applied to geometry, and was capable of yielding all known 

results concerning areas, volumes, tangents, and arclengths.  Leibniz described his 

original insights into the consistency between geometry, and his new algebraic 

notation, by focusing on what came to be know as the "transmutation of curves" which 

involved a particular example of a large triangle which is similar to the characteristic 

one.  He used this triangle as a way to draw new curves from existing ones.  This 

method of curve drawing produces, from the original curve, a new "transmuted curve" 

which bounds areas that are closely related to the areas bounded by the original curve.  

As we shall see, this transmutation is closely akin to integration by parts.  This 

technique was first investigated by Leibniz early in his career, in 1673, and was 

described in his letters to Newton (Turnbull, 1960; Child, 1920; Edwards, 1979). 
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 In order to understand the curves and derivations of Leibniz, I have constructed 

the following three point rectilinear example, as an introduction.  This example is not 

from the writings of Leibniz, but it I think it could help students understand his 

conceptual approach.  Imagine a piece-wise linear "curve" passing through the three 

points 

� 

A , 

� 

B, and 

� 

C , where 

� 

A  is the origin (see Figure 2.14d).  If all three points are 

collinear then the area under this curve is the area of triangle 

� 

!ACG , which is equal to 

� 

1

2
! x ! y , where 

� 

! x  and 

� 

! y  are the coordinates of 

� 

C .34  If 

� 

B is moved up off the line 

� 

AC  

then the area under the curve 

� 

ABC  equals 

� 

 
1

2
! x ! y +Area("ABC) .  Leibniz's 

transmutation technique shows us how to find the area of 

� 

!ABC , by looking at a new 

curve which is drawn by monitoring where the tangents (

� 

AB  and 

� 

BC  in this case) to the 

original curve intersect the 

� 

y -axis.  
 

  
           Figure 2.14d 
  

 If we let the point 

� 

U  be the intersection of line 

� 

BC  (tangent) with the 

� 

y -axis, 

then Figure  

 shows how to construct a right triangle 

� 

!DFG , which is equal in area to triangle 

� 

!ABC , 

by making 

� 

FG = AU , and 

� 

DG = BH .  To see this area equality, first construct 

� 

AN  

perpendicular to 

� 

BC .  Now triangles 

� 

!BHC  and 

� 

!ANU  are similar.  This triangle 

� 

!ANU  is an example of a triangle which is similar to the characteristic triangle at the 

point 

� 

B.  Letting 

� 

AU = z  and 

� 

AN = p , from the similarity one sees that 

� 

z ! dx = p ! ds . 
   
                                                 
34  Throughout this section prime notation such as x' and y' will be used to denote fixed endpoint 
values of variables, and has no relation to derivatives.  Any  mention of derivatives will use 
strictly Leibniz notation. 
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    Figure 2.14e 
 

 Since triangle 

� 

!ABC  can be seen as having a base of 

� 

ds and height of 

� 

p , its area 

is 

� 

1

2
p ! ds , while triangle 

� 

!DFG  has a base of 

� 

dx  and a height of 

� 

z  and hence an area of 

� 

1

2
z ! dx .  Hence the similarity tells us that the two darkly shaded triangular areas are 

equal.  This construction can be seen to be helpful in the sense that triangle 

� 

!ABC  has 

been "transmuted" into the right triangle 

� 

!DGF , which sits nicely in the coordinate 

system.  If 

� 

C = ( ! x , ! y ) , then the area under the curve 

� 

ABC  equals 

� 

Area(!AGC) + Area(!ABC) =
1

2
" x " y +Area(!DGF) .  Using Geometer's Sketchpad,  one can 

drag point 

� 

B to different positions and watch the changes in triangle 

� 

!DFG , while 

monitoring the areas with meters.   

  In order to generalize this construction to non linear curves, Leibniz defined a 

new "transmuted curve" constructed from any given curve, relative to an axis of 

ordinates, as follows: 

Definition:  Given any curve and a system of perpendicular abscissas and ordinates, for 

each point 

� 

(x, y)  on the given curve define a point 

� 

(x,z)  on the transmutation curve as 

the one which has the same abscissa 

� 

x , and has, as its ordinate, the length

� 

z , where 

� 

z  is 

equal to the 

� 

y -intercept of the tangent line to the original curve at the point 

� 

(x, y) . 
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 In Figure 2.14e, starting with the curve 

� 

ABC , this new transmuted curve would 

be the piecewise linear path through 

� 

ADEF  (i.e. a step function in the modern sense).  

Leibniz then expressed the area under the original curve from 

� 

A  to 

� 

C  as: 

� 

1

2
! x ! y +

1

2
(area under the transmuted curve) , where 

� 

A = (0,0)  and 

� 

C = ( ! x , ! y ) .  The first term 

is the area of triangle 

� 

!ACG , and second term is equal to the "extra area" under the 

curve contributed by triangle 

� 

!ABC .     

 This general curve drawing technique can applied to any curve where one can 

construct the tangent lines at all points and thus monitor their intersections with the 

axis of ordinates.  The area under the new transmuted curve, drawn from the original, 

will then be used to find the area under the original curve.  This geometrical 

construction yielded, for Leibniz, the area formula above, which is algebraically (but 

not conceptually) equivalent to the technique now known as "integration by parts."  

Leibniz, however, developed his transmutation of curves prior to his algebraic 

notations, such as the product rule.  He developed a general algebraic language (i.e. the 

calculus) only after he had investigated many examples of his geometric transmutation, 

and had seen the generality of the technique.  The extension of his language and 

notation to geometry grew from his experience with curve generation and 

transmutation. 

 I will next apply this curve drawing technique to the circle, because it was 

Leibniz's favorite example (Child, 1920).  In doing so, I will also derive again the 

transmutation area formula in a more general setting using the mature notation of 

Leibniz, although this derivation is essentially the same as the one from Figure 2.14e.  

This general transmutation formula (2.14-1) which I will derive is then valid for any 

curve with tangent lines.   

 I start by letting the point 

� 

P  rotate around a circle while dragging its tangent line 

� 

PT  with it (see Figure 2.14f).  Letting the diameter 

� 

AB  be the axis of abscissas measured 
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from 

� 

A  (i.e. 

� 

A = (0,0) ), at each position of 

� 

P , let 

� 

AN  be a perpendicular from 

� 

A  to the 

tangent line.  The triangle 

� 

!AUP  (shaded) is then similar to the small characteristic 

triangle along the curve at 

� 

P .  Construct a new curve by tracing the locus of the point 

� 

R, where 

� 

R and 

� 

P  always have the same abscissa 

� 

AS , and the new ordinate 

� 

RS  is 

always equal to 

� 

AU  (the 

� 

y -intercept of the tangent line at 

� 

P ).  This new curve is drawn 

from the circle in Figure 2.14f, using an animation in Geometer's Sketchpad.  See Figures 

2.14i and 2.14j to see this same technique applied to the cycloid and the hyperbola .             
        �       

    
    Figure 2.14f 
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 Using the mature notation of Leibniz, his general transmutation area formula can 

be derived as follows.  As before, let 

� 

x = AS  and 

� 

y = SP  be the abscissas and ordinates 

of the original curve, and let 

� 

z = AU  be the ordinates of the transmuted curve 

(i.e.

� 

P = (x,y)  and 

� 

R = (x,z) ).  Since 

� 

z  is the intercept of the tangent line to the original 

curve, 

� 

z = y ! x "
dy

dx
.  Now let 

� 

p = AN .  Since triangle 

� 

!ANU  is similar to the 

characteristic triangle at the point 

� 

P  (sides 

� 

dx , 

� 

dy , and

� 

ds) we have: 

� 

dx

ds
=
p

z
, where 

� 

s is 

arclength along the original curve.  Hence 

� 

p ! ds = z ! dx . 
 

   
    Figure 2.14g 
 

 Now imagine two points, 

� 

P  and 

� 

! P , on the original curve that are so close 

together that the line 

� 

P ! P  is essentially the tangent line at 

� 

P  (see Figure 2.14g).  Now 

imagine the slender triangle 

� 

!AP " P  (shaded).  Thinking of

� 

P ! P = ds  as the base this 

triangle, it has a height of 

� 

AN = p , and so its area is  

 

� 

1

2
! p ! ds =

1

2
! z ! dx (from the above similarity argument).   
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    Figure 2.14h 
 

 Now choose any fixed point 

� 

C = ( ! x , ! y )  on the original curve (see Figure 2.14h).  

The area of the shaded sector 

� 

AC  is the sum of the slender triangular sectors in Figure 

2.14g, which equals 

� 

1

2
p ! ds =

0

" x 

#
1

2
z ! dx

0

" x 

# .   The area under the curve between 

� 

A  and 

� 

C  

is equal to the area of triangle 

� 

!AGC  plus the area of the shaded sector, which is to say : 
  

(2.14-1) 

� 

y ! dx =
0

" x 

#
1

2
" x ! " y ( ) +

1

2
z ! dx

0

" x 

#  
 

This is Leibniz's transmutation formula.  As I showed in the three point example, it says 

that the area under any curve is the triangle 

� 

!AGC  plus half the area under the 

transmutation curve.  If one substitutes for 

� 

z  from the original definition 

� 

z = y ! x "
dy

dx
, 

and then solves for the integral of

� 

y , then the statement becomes the usual integration 
by parts formula written for definite integrals: 

� 

y ! dx
0

" x 

# = [xy]
(0,0)

( " x , " y ) $ x ! dy
0

" y 

# . 

 I make this last statement only for modern readers to see the connection with the 

usual algebraic approach to "integration by parts" which is taught as an application of 

the product rule written backwards.  The formula which Leibniz applied with great 

success, in a large number of examples, is the geometric statement (2.14-1) which 

expresses the area under the original curve in terms of the triangle 

� 

!AGC  plus half the 

area under the new transmutation curve.  This transmutation curve can be drawn by a 

simple linkage, provided that the method which drew the original curve included a 

construction of tangent lines.  This chapter has already shown that that can be done for 
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a great variety of curves.  This technique of Leibniz is a response to experience with the 

tools of the day.  The tools mediated the knowledge.     

 Leibniz first stated his formula in a purely geometric language.  For him, it was a 

major breakthrough in seeing how tangents could be used to determine areas.  He 

developed this method just before he constructed his first notations for calculus, which 

would later include such statements as the "product rule," the "quotient rule," and the 

"chain rule."   Integration by parts is usually introduced to students as a purely 

algebraic manipulation of the product rule, but for Leibniz, such a derivation was an 

algebraic confirmation of the geometric experiments that he carried out using his 

transmutation technique. 

 This transmutation of curves can be used in a variety of ways to conduct the kind 

of critical experiment that tests the validity of a new language against independently 

established results.  Here is how Leibniz applied the transmutation formula to obtain an 

expression for the area under any part of circle, and then tested his expression by using 

it to compute the area of a quarter of a circle of radius one.  In Figure 2.14f, let 

� 

G  be the 

center of the circle of radius one: 

� 

AG =1 , and 

� 

A = (0,0) .  The equation of the upper half 

of the circle is 

� 

y = 2x ! x
2 , and since the tangent is always perpendicular to the radius, 

� 

 
dy

dx
=

1! x

y
.  Hence the equation of the newly drawn, bell shaped, transmutation curve 

is: 
   

  

� 

z = y ! x
1! x

y
=

x

2 ! x
    or    x =

2z
2

1 + z 2
 

 

By synthetic division,   

� 

x = 2{ z
2
! z

4
+  z

6
! z

8
+!}  

 Now the area under the circle between 

� 

A = (0,0)  and any fixed point 

� 

! x , ! y ( )  

is given by (2.14-1) as: 

� 

y ! dx =
0

" x 

#
1

2
" x ! " y ( ) +

1

2
z ! dx

0

" x 

#  

Since 

� 

z , in terms of

� 

x , also involves a square root, Leibniz rewrote the area under 

the transmutation curve by subtracting its complement from the rectangle 
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containing it.  Hence, as an integral in 

� 

x  subtracted from the circumscribed 

rectangle with area 

� 

! x " ! z  (where 

� 

! z  is the value of 

� 

z  at 

� 

x = ! x ), Leibniz obtained: 
  

� 

z ! dx =
0

" x 

# " x ! " z ( ) $ x ! dz
0

" z 

#  
 

This new integral can now be expressed using the synthetic division above and then 

integrated term by term.35  Hence the area under the circle is: 
                

  

� 

y ! dx
0

" x 

# =
1

2
( " x ! " y ) +

1

2
( " x ! " z ) $

1

2
2(z

2 $ z
4

+ z
6 $ z

8
+ …)dz

0

" z 

#  

 
  

� 

=
1

2
( ! x " ! y ) +

1

2
( ! x " ! z ) #

1

3
z

3 #
1

5
z

5 
+

1

7
z

7 #
1

9
z

9
+  !

$ 

% 
& 

' 

( 
) 

0

! z 

 

  
  

� 

=
1

2
( ! x " ! y ) +

1

2
( ! x " ! z ) #

1

3
! z 

3 #
1

5
! z 

5 
+

 1

7
! z 

7 #
1

9
! z 

9 
+  !

$ 

% 

& 

' 
 

 

 In order to test the validity of this expression against known results in geometry, 

Leibniz checked it on the area of a quarter circle where 

� 

! x = ! y = ! z =1.  The expression 

above then asserts that: 
 

 
  

� 

!

4
=1"

1

3
+  

1

5
"

1

7
+

1

9
"

1

11
+!  

  
Checking this series empirically one finds that it does indeed converge to 

� 

!

4
, although 

very slowly.36  This alternating odd harmonic series provided a new way to compute π, 

                                                 
35  The calculation of areas and volumes that involve only the summation (integration) of 
polynomials had been known since the tenth century from the work of the Arabic mathematician, 
al-Haitham.  In the early seventeenth century the Arabic work on polynomial summations had 
been extensively elaborated by Cavalieri, Fermat, Pascal and Wallis (Struik, 1969;  Dennis & 
Confrey 1993).   
36  Many terms of this series are needed to obtain even a minimal level of accuracy.  As a 
practical calculation of π, this method is abysmal.  More effective methods for evaluating π had 
been known since ancient times (Archimedes, 1952), such as the doubling on the number of 
sides in regular polygons, which gives π as a nested series of square roots.  This was not a new 
practical calculation; it was a confirming experiment for the validity of a new language.  
     A modern calculus book would evaluate the area under a section of the circle by making a 
trigonometric substitution into an integral.  Such an approach looks simple, but is only useful if 
one already has a means to evaluate trig functions.  Such means usually involve an infinite series.  
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and it was the first known expression for π  as a sum of rational numbers.  Far more 

important for Leibniz was the fact that this calculation was a confirming experiment 

that showed that his new language was indeed a tool which was consistent with the 

long established traditions of geometry.  This showed him that the notation that he 

developed from tables could be consistently applied to geometry.  

 The confirmation of a new mathematical approach using as a check a new 

computation of π was a favorite procedure during the seventeenth century.  In 1655, 

John Wallis had used exactly this method to confirm his assertions about the 

consistency of algebra and geometry in his Arithmetica Infinitorum (1972).  He had 

justified his extensive use of table interpolations by showing that they implied a value 

for π, given as an infinite product, which was consistent with other computations from 

geometric constructions, such as the iterated square root procedure of Archimedes 

(Dennis & Confrey, 1993).  This work of Wallis had a profound effect on the work of 

both Leibniz and Newton (Newton,1967; Child, 1920). 

 The use of synthetic division to create an infinite series was a technique 

pioneered by Nicolaus Mercator (1620 -1687), and used extensively by Leibniz, Newton 

and other mathematicians of the period.  Leibniz saw his transmutation technique as a 

general method for finding rational expressions that could replace those integrands 

which contained root extractions, thereby creating series expressions for those areas 

using, first, synthetic division, followed by term by term polynomial integration (i.e. 

what Leibniz called "Mercator's method") (Turnbull, 1960; Boyer, 1968).  In the example 

above, for the circle, it should be noted that the transmutation curve for the circle is a 

cubic curve, since it contains an 

� 

xz
2  term.  In general the transmutation curves for conic 

                                                                                                                                                             
The series usually used for computing trig functions were first derived from series which 
expressed areas, like the one discussed here.  (See Newton, 1967; Dennis & Confrey, 1993; 
Edwards, 1979).   
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sections are of third or fourth degree, or what Descartes called "curves of the second 

class."    

 Leibniz drew remarkably few figures in his descriptions of his work.  He tended 

to prefer elegant tabular displays of the coefficients that occurred in his series 

expansions (see for example his August, 1676 letter to Newton in Turnbull, 1960, pp. 65 

-71).  These tabular displays reveal some remarkable connections between 

trigonometric series like the one above and logarithmic series which come from 

hyperbolic areas via transmutation (see figure 2.14j).  Despite the paucity of figures in 

the original discussions of Leibniz, Geometer's Sketchpad allows one to create a 

remarkable set of curves based on the transmutation construction.  It is these sets of 

curves with their corresponding equivalent areas which I feel could provide fertile 

ground for student investigations. 

 A simpler and interesting special case comes from transmuting a parabola using 

the line tangent to the vertex as the axis of ordinates (this example does not appear in 

Leibniz).  I invite the reader to make his/her own figure (see Section 2.4).  One could 

then choose a coordinate system so that the parabola has the equation: 

� 

y = x .  From 

the geometric properties of parabolic tangents discussed in Section 2.4 (i.e. the 

subtangent is always twice the abscissa), it can be seen that the transmutation curve of 

this parabola is another parabola whose ordinates are half those of the original curve, 

 i.e. 

� 

z =
x

2
.  If one considers the area under the curve from (0,0) to 

� 

( ! x , ! y ) transmutation tells us that: 

� 

x dx
0

! x 

" =
! x ! y 

2
+
1

2

x

2
dx

0

! x 

" .   

 Since the same integral appears on both sides one can solve for it to obtain: 

� 

 x dx =
2

3
! x ! y =

2

3
! y 

3

0

! x 

" .  By looking at the complement of the rectangle with sides 

� 

! x  

and 

� 

! y , this is equivalent to the usual integration of the parabola written as 

� 

y
2
dy =

1

3
! y 
3

0

! y 

" .  Note that this does not involve any use of "anti-derivatives," but is 

instead a linguistic coding of purely geometric properties that built the parabola.      
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 I wish to return to the cycloid and discuss another of Leibniz's application of the 

transmutation technique (Edwards, 1979).  Roberval's argument (Section 2.13) showed 

that the area of an entire cycloidal arch was three times the area of the circle that 

generated it, but this argument depended on the symmetry of the companion (sine) 

curve, and thus did not yield the values of arbitrary sections of cycloidal area.  Using 

the constructed tangents one can draw the transmutation curve, and arrive at this 

general result.  Figure 2.14i shows one half of a cycloidal arch drawn sideways (i.e. the 

wheel is rolling along the vertical line 

� 

FD).  It turns out that the transmutation curve 

traced by the point 

� 

R is exactly the same as Roberval's companion curve, i.e. a sine-

shaped curve.  This follows from the fact that the tangent at 

� 

P  is parallel to

� 

AB , and so 

� 

PB = AU , and hence by subtraction 

� 

PR = SB .  
 

  
       Figure 2.14i 
 

 Leibniz determined the area under the cycloid over any portion of the axis 

� 

AD  as 

follows.  Introducing variables as before; let the abscissas 

� 

x  be measured from 

� 

A  along 

� 

AD , and let 

� 

y , 

� 

z , and 

� 

w  be the ordinates, respectively, of the three curves shown in the 
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figure, those being the cycloid, sine, and circle.  That is to say let: 

� 

P = (x,y) , 

� 

R = (x,z) , 

and 

� 

B = (x,w) .  Since 

� 

w = SB = PR , then

� 

y = z +w .  From the motion that produced the 

cycloid one knows that the circular arclength from 

� 

B to 

� 

D will equal

� 

FE , while the 

circular arclength from 

� 

A  to 

� 

B will equal 

� 

ED = AU = PB = RS = z . This says that the 

locus of 

� 

R can be seen as a graph of arclength against height on the circle, which makes 

the curve sine shaped.   

 Let the constant radius of the generating circle be 

� 

r = AC .  Suppose one seeks the 

area under the cycloid between 0 and some

� 

! x .  Let 

� 

! y , 

� 

! w , and 

� 

! z   be the corresponding 

endpoint values.  The general transmutation formula  

(2.14-1) says that: 

 

� 

y ! dx =
1

20

" x 

# " x ! " y + z ! dx
0

" x 

#$ 
% 

& 
'  

 

� 

(z + w) ! dx =
1

20

" x 

# " x ! " y + z ! dx
0

" x 

#$ 
% 

& 
'  

Solving this for 

� 

z ! dx
0

" x 

#  yields: 

� 

z ! dx =
0

" x 

# " x ! " y $ 2 w ! dx
0

" x 

#   

Since 

� 

w  represents the ordinates along the circle, 

� 

w ! dx
0

" x 

#  is the area under the circle 

from 0 to

� 

! x , which can be expressed as the area of the circular sector 

� 

ABC  plus (or 

minus) the area of the triangle 

� 

!CBS  (see figure 2.14i).  In my figure 

� 

! x > r , but if 

� 

! x < r  

then one subtracts the triangle from the sector, in which case 

� 

! x " r  will be negative.  

Using 

� 

! z = (arclength from A to B)  to express the area of the sector one obtains: 

� 

w ! dx
0

" x 

# =
1

2
r " z +

1

2
" w ( " x $ r) . 

Now 

� 

z ! dx
0

" x 

# = " x " y $ 2 
1

2
r " z +

1

2
" w ( " x $ r)

% 

& 

' 

( 
= " x ( " z + " w ) $ r " z $ " w ( " x $ r) 

= r " w $ " z (r $ " x )

 

Substituting this back into the original transmutation formula yields:    

(2.14-2) 

� 

y ! dx
0

" x 

# =
1

2
" x " y +

1

2
r " w $ " z (r $ " x )( )  

which gives the area under a cycloidal section in terms of the radius of the generating 

circle

� 

r , the endpoint 

� 

P = ( ! x , ! y ) , the arclength of rotation 

� 

! z  and the ordinate to the 
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circle

� 

! w .  These are the constants which are natural to the action of drawing the curve.  

If one attempts to use the transmutation formula in a strictly algebraic sense then 

� 

z ! dx
0

" x 

#  calls for an integral of the arcsine function.  This is not the conceptual approach 

taken here.  In order to apply formula (2.14-2) one does need to know the arclength 

� 

! z  

but the action which drew the cycloid produced line segments which were equal to this 

arclength.  Although this approach is quite analytic one should note that the parametric 

equations of the cycloid were never written down or directly used.  Only later did 

Leibniz write down the parametric equations and then use them to further test his 

calculus notations.     

 If one applies Formula 2.14-2 to one half of the cycloidal arch then 

� 

! x = 2r,   ! y = "r,   ! w = 0,  ! z = "r .  Using these values the formula yields 

� 

 
3

2
! r

2 .  This is in 

accordance with Galileo's experiments, and Roberval's geometry.  Pascal had earlier 

given a general geometric solution for the area of a cycloidal section against which 

Leibniz's formula (2.14-2) could also be checked.  It is this checking back and forth 

between geometry and the new language of calculus that gave people faith in the new 

linguistic constructions of Leibniz.   

 Leibniz applied his transmutation technique to the hyperbola and obtained an 

infinite series for the area between a hyperbola and its axis of symmetry, in much the 

same way that he found the circular areas.  This series intrigued him because of its 

relations to other series, found by Newton and Mercator, for the calculation of areas 

between hyperbolas and their asymptotes (called by Mercator "natural logarithms") 

(Turnbull, 1960; Edwards, 1979).  I will not describe all of these calculations, but I will 

draw the transmutation curve because most historical accounts provide either no 

figures or highly distorted ones. Using the envelope construction from Section 2.6 to 

draw the hyperbola with its tangents, one can trace the locus of the transmutation curve 

using one vertex 

� 

A  as the origin.   Figure 2.14j shows all three branches of this curve for 
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the hyperbola with vertices A and B.  This curve has a cubic equation that is very 

similar in form (a single sign change) to the one for the circle, but the appearance of the 

curve is quite different.  In this case, the equation of the hyperbola is 

� 

y = 2x + x
2 , and 

the equation of the transmutation curve is 

� 

x =
2z

2

1! z
2

.   One then proceeds to construct an 

infinite series, as in the circular case, via Mercator's method and the transmutation area 

formula (Turnbull, 1960; Edwards, 1979).             
      

   
    Figure 2.14j 
 

 What I find educationally valuable is the experience of accurately drawing these 

curves without any reference to equations or even the establishment of a scale.  Using 

the previous conic drawing methods, one can draw a large variety of transmutation 
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curves, depending on where one chooses to place the line on which the tangent 

intercepts 

� 

z  are to be observed.  The examples chosen by Leibniz had a specific 

algebraic purpose which was to rewrite areas, in a rational form, so that synthetic 

division and term by term integration would yield an infinite series, but I find these 

curves interesting in their own right.  They provide an iterative way to generate curves 

of increasing degree whose areas have a special relation to the original curve form 

which they were drawn. 

 Choosing different lines on which to intersect the tangents gives a fascinating 

geometric view of all possible different ways to integrate by parts.  Not all of these 

choices will yield an algebraic simplification.  For example if one constructs a 

transmutation curve for the hyperbola 

� 

y =1 x  by using the 

� 

y -axis (i.e. an asymptote) 

for the construction then the transmutation curve is another hyperbola with the same 

asymptotes which is just a multiple of the original curve.  This is equivalent to an 

application of  integration by parts which is algebraically circular. 

 Experimenting along these lines can produce beautiful and fascinating new 

curves.  Figure 2.14k shows a another hyperbolic transmutation curve drawn with 

respect to a line at a skewed angle to the axis of symmetry of the hyperbola.  This time 

the transmutation curve has two  branches instead of three.  Leibniz's area relation still 

holds.  That is, the difference between the area under the hyperbola (traced by 

� 

P ) and 

the triangle 

� 

!APG  is always one half of the area under the curve traced by 

� 

R (from 

� 

A  to 

any given 

� 

x ).  Looking at this figure and the previous one, a variety of graphic 

observations could emerge for discussion.  For example, what does it mean when the 

original curve and the transmutation curve cross each other?  When the original curve 

becomes quite straight near its asymptotes, then the transmutation curve becomes quite 

flat and nearly constant.  What does this say about related area accumulation?  How 

does one interpret the places where the transmutation curve crosses the 

� 

x -axis in terms 

of area accumulation on the original curve?    
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    Figure2.14k  
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2.15  Summary Remarks 

 All of the figures in this chapter were accurately drawn with all ratios of lengths 

and areas shown in proper proportion, and yet never once was an equation plotted or 

entered into a computer as a means of generation.  Geometrically defined motions, all 

of which can be mechanically produced, created the curves.  The algebra and tables, 

and even the numerical scales, presented were all created after the fact as a form of 

syntax through which one conducts a systematic inquiry into the geometric actions that 

created the curves.  If I had presented only one or two good examples of investigation 

based on curve drawing (e.g. the parabola in Section 2.4) a possible response might 

have been to think that they were beautiful special cases, but not a fully general, 

pervasive and independent mathematical approach.  I hope that I have presented 

enough material to eliminate that response. 

 This chapter began with the notion of  diameters and axes and their 

corresponding ordinate directions which were the main tool of Apollonius for the 

investigation of conic sections.  This notion has many functional aspects in that it leads 

towards the view that a curve is a sequence of ordinate segments which are ordered by 

an axis, and that specific ratio statements can be made about such orderings.  

Combining this idea with the mechanical devices of the seventeenth century and with 

the emerging algebraic symbolism, led to the development of analytic geometry, not as 

a formal language, but as a generalized tool for the investigation of curves and motion.  

The examples presented give a sense of how successfully these generalized tools were 

used to investigate a wide variety of curves and motions. 

   I have tried to sketch this development right up to the brink of calculus in order 

to show how language is tailored to fit experience.  Although education is not a reliving 

of history, one aim of this thesis is to advocate for how important it is for students to see 

mathematical language as a tool forged within a set of experiences.  Students must first 
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be involved in some set of experiential activities before this understanding can take 

place.  Sometimes examples taken directly from history can best provide such 

experiences (e.g. Sections 2.4, 2.7 or 2.13), and at other times historical examples can be 

modified for educational purposes (e.g. Section 2.12).   

 Much more could have been said about the relation of curve drawing to other 

mathematical representations, for example, the relations of the transmutation technique 

to the development of tables and summations (Child, 1920), but my intention here is not 

to provide fully developed curriculum materials.  This chapter contains enough 

material to make the argument that valuable conceptual diversity has been lost from 

mathematics by the representational constraints of our current curriculum.  The 

existence of software like Geometer's Sketchpad  makes it impossible to justify these 

constraints by simply saying that geometric curve drawing is too complicated and 

unwieldy for classroom use.  The combination of available software and physical tools 

with the diverse historical representations of curves indicate specific directions for 

curricular reform.   

 More geometry is needed in our curriculum, but if that geometry is to provide 

the experiential base which leads to an understanding of calculus then it must involve 

motion and curves.  The traditional static geometry with two column proofs, based 

loosely on Euclid's Books 1-4, fails to provide the appropriate experiences.  As early as 

possible geometry must be connected to mechanics, motion, and curves.  This chapter 

has indicated how such a curriculum could begin to be constructed.  When curves are 

investigated dynamically, their tangents, areas, and arclengths can all be investigated, 

empirically at first, and then with increasing analytic precision.  Reflect, for example, on 

the area of a cycloidal arch first measured empirically by Galileo, and then determined 

by Roberval using mechanical geometry (Section 2.13), and finally analyzed by Leibniz 

using an algebraic expression that emerged from a more general view of the mechanics 
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of curve generation (Section 2.14).  A precise analysis like Roberval's need not be 

algebraic, and could be conducted by students before they study analytic geometry. 

 The material in this chapter establishes the first and third claims of this thesis as 

stated at the end of Section 1.1 (p. 9).  The first claim ,that curve drawing devices played 

a fundamental historic and conceptual role in the development of analytic geometry 

and calculus, could be established by simply looking at Descartes' Geometry, and then 

realizing the impact that that book had on seventeenth century mathematical thought.  I 

have gone beyond that limited argument in an attempt to show how a larger 

technological experience with tools was shaping the mathematical thought of at least 

two generations of European mathematicians.  I have also made some attempt to show 

how this development was rooted in the work of Apollonius and Arabic 

mathematicians. 

 My third claim , concerning discussion of tangents, areas, and arclengths, was 

repeatedly established for a wide variety of curves.   In particular, the tangent 

properties of conic sections could be easily investigated  informally by students with 

little or no algebraic background, by using the devices described in the earlier sections 

of this chapter.  Similar investigations involving trigonometric and logarithmic curves 

could occur well in advance of calculus, as part of a reformed analytic geometry 

curriculum.  Historical discussions of the social and technological history of the 

scientific revolution would connect such mathematical investigations directly with 

larger cultural issues, but most importantly these investigations would provide 

students with more appropriate, dynamic, geometric experience.  Such experience 

would lend far greater meaning to the syntactical structures of calculus.       

 The role of functions as conceptual tools for the analysis of curve drawing 

actions reverses the usual epistemic role that they play in current curriculum where 

functions are used to create curves.  This reversed role could allow for a meaningful 

introduction of functions in an empirical geometric setting quite early in the 
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curriculum.  Functional notions in this sense could be introduced before analytic 

geometry, and could provide an important way to build early connections between 

geometry and algebra.  How early this material could be introduced would have to be 

the subject of further study, but I suspect that the middle schools years would be the 

appropriate place to begin such research. 

 An issue raised by the historical material in this chapter concerns the use of 

parameters and parametric functions.  This issue comes up again in the student 

interviews of Chapter 3.  In many cases a given geometrical method for  generating a 

curve implies that the points on the curve are being defined from a particular parameter 

space.  For example, at the end of Section 2.5 points on the ellipse are defined from the 

set of points on the hodographic circle.  The circle forms an explicit parameter space in a 

very tactile way, since in Geometer's Sketchpad one drags a point around this circle in 

order to generate the ellipse.  Newton's method for drawing curves described in Section 

2.9 always creates new curves from a given "directrix curve."  In the case of conic 

sections, this directrix is always a line and there is a one to one correspondence between 

points on the "directrix" and points on the curves.  Again one finds here a very specific 

parameter from which the curve is being defined.  This suggests that perhaps 

parametric equations as a form of analytic representation of curves could be introduced 

earlier in the curriculum and that this form of equation writing might be very natural in 

the setting of  mechanically generated curves.  This thesis will not make any specific 

educational claims regarding this issue, but since it arises both here and in the student 

interviews, it would seem to be a fruitful direction for further research.                   

 Another more general philosophical question that arises here: what is a 

representation of what?  Are curves a visual representation of functions? or are 

functions syntactical tools for the representation of curves?  The first view is the one 

usually taken by modern curriculum, although the concept of a curve is more general 

than the notion of a "graph of a function."  The second view is implied by Leibniz's 
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original concept of function as described in Section 2.3, and by the parametric issue just 

discussed.  I propose that this question can provide enlightening reflection, but is best 

left unanswered.  Both views provide important insights.  Neither concept can be 

completely contained within the other, just as the equator of the earth divides its 

surface into two hemispheres neither of which can be said to definitively contain the 

other, although each is surrounded by the other.  Any attempt at hierarchical structure 

will diminish the creative diversity of mathematics.  The inside is the outside is the 

inside is the outside . . . . . . in a perpetual feedback loop.  
 



    

David Dennis Curve Drawing Devices http://www.quadrivium.info  
 

203 

 

Chapter Three: Interviews with Students Exploring Elliptic Devices 

3.1  The Content and Purpose of the Interviews 

 This chapter will present the results of interviews with two high school 

students as they explored three different devices for drawing ellipses.  My 

intention here was to see how the physical devices themselves mediate knowledge.  

In particular how such tools can create a situation where curves have a primary 

existence and algebraic quantification, and symbolism play a secondary, 

facilitating role.  The students were given no prior instruction in the historical, 

cultural or mathematical significance of the devices with which they worked.  

With only the most basic hands on instruction as to how to operate the curve 

drawing devices they were then asked questions about what kinds of curves each 

device could draw, the possible situations where different devices might or might 

not draw the same curve, and how the action of each device might give rise to an 

algebraic representation.  They were asked to justify their answers in any way that 

seemed appropriate to them. 

 The three devices chosen have been described and analyzed in Sections 2.5 

and 2.9.  They are the loop of string over two tacks (Figure 2.5a), the right angled 

trammel device (Figures 2.9a, 2.9d), and the folding arm device (Figure 2.9g).  All 

three devices were carefully built to be accurate and easily adjustable.  They all 

worked on the fairly large scale of a three foot by four foot drawing area.   

 The string device involved a 3ft. x 4ft., paper covered sheet of soft plywood 

into which tacks could be inserted.  An adjustable loop of string could then be 

placed over the tacks and then drawn taut with a colored pencil.  The string was 

tough braided nylon which would not stretch and the length of the loop could be 

quickly and easily adjusted by a spring locked slide such as those found on the 

drawstrings of coats. 
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    Figure 3.1a 
 

 The trammel device worked on a 3ft. x 4ft. sheet of Plexiglas which had two 

narrow grooves (1/8 in.) carved into it at right angles to each other and bisecting 

both dimensions of the sheet.  The trammel itself (see Figure 3.1a) was made from 

a 25in., slotted wooden stick with a fixed pin at one end which could slide in one 

of the grooves in the Plexiglas.  An identical pin which could slide in the other 

groove protruded from a small aluminum holder which fitted into the slotted stick 

and could be locked with a thumbscrew at any chosen distance from the fixed pin 

(range =2in. - 25in.) thus creating a trammel of adjustable length.  The path of 

motion of any point on the trammel could be traced on the Plexiglas by a pen fitted 

in an adjustable penholder.  In the slot of the trammel stick were fitted aluminum 

pieces which were drilled as a penholders for dry-erase, colored marking pens.  

These penholders could be locked at any position on the trammel with a thumb 

screw.  The pen fit tightly into the penholder and did not need to be held by hand 

during the drawing motion of the trammel.  One penholder was placed between 

the two pins to form a trammel device as in Figure 2.9a, and the other was beyond 

the second pin for drawing curves as in Figure 2.9d. 

 The folding arm device used the same sheet of Plexiglas, pens and 

penholders as the trammel device, but this time two 15in. slotted sticks, similar to 
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the trammel, were hinged together at their ends (i.e. where the fixed pin is marked 

in Figure 3.1a).  One stick (arm) was fitted with an adjustable long pin which 

rotated in a hole drilled in the center of the Plexiglas.  The distance of this pin from 

the hinge could be adjusted and locked with a thumbscrew (2 in. - 15 in).  The 

other stick (arm) had a short pin which could slide in one of the grooves and 

whose distance from the hinge could also be adjusted and locked with a 

thumbscrew.  As with the trammel adjustable penholders were placed on the this 

second arm on either side of the short sliding pin, hence both of the drawing 

configurations shown in Figure 2.9g were possible.  As was shown in Section 2.9, 

this device will draw ellipses as long as the rotation pin and the sliding pin are 

equidistant from the hinge between the two arms.  If these distances are not equal 

then this device will draw curves as in Figure 2.9h.  While the loop of string and 

trammel devices could draw an entire ellipse in one smooth motion, this folding 

arm device could draw only half of an ellipse before the arms collided.  To 

complete the entire ellipse the second arm had to be lifted or flipped over to the 

other side of the rotating pin. 

 I chose to build these three particular devices for use in student interviews 

for the following reasons.  Ellipses are common in visual experience, science and 

art, aesthetically pleasing, and although the curve is not the graph of a function in 

a narrow sense, its equation is fairly simple and familiar to the students.  These 

three devices are all fairly simple to build, demonstrate and experiment with.  The 

actions involved in all three can be felt directly and intuitively, and although they 

are each capable of drawing the entire family of ellipses, they all feel quite 

different and the adjustments for changing the elliptic parameters work in 

different ways and hence any algebraic relations that emerge directly from the 

actions will, at first, have different forms.  There is an immediate physical element 

of surprise when three such different actions all produce curves which look the 
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same.  As the interviews will show, this first impression provided a strong 

motivation for the students to search for a reconciliation of their physical 

experience with mathematical representations. 

 The high school students had heard about the loop of string device, and had 

seen their teacher derive an elliptic equation from the constant sum of the two 

focal distances implied by action of the device.  For the purpose of interviews, this 

device provided an initial sense of familiarity for the students, although they had 

not personally experimented with such a device with their own hands, and hence 

had little practical instinct for exactly how variations in the length of the loop and 

the distance between the tacks would affect the curve.  They had seen various 

videos and computer animations of conic sections, but their experience had been 

passive and visual, not active and tactile. 

 The students had never seen a trammel device used to draw ellipses, 

although the action involved in the device is perhaps the most simple of the three 

(e.g. a ladder sliding down the wall).   From a practical standpoint (e.g. in 

carpentry) it is the most useful since it draws an ellipse directly from its most 

apparent visual dimensions (i.e. major and minor axes).  Making connections 

between the loop of string and the trammel provided a rich problematic 

experience grounded in an immediately tangible situation.  No matter how it was 

approached, it involved some kind of profound geometrical or algebraic 

transformation, since the former device starts by establishing the foci whereas the 

latter gives no immediate indication as to focal position.  Algebraic representation 

of the loop of string device depends on the distance formula while the other two 

depend on similarity and proportion.   

 The folding arm device was included because, although its action feels quite 

different from the trammel, it has close geometric relations with the trammel 

device.  For example, once one sees that the midpoint of the trammel draws a circle 
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one can directly relate the trammel and the folding arm device (with equal arms), 

and see that they draw the same curves (see Section 2.9).  I wondered to what 

extent high school students might try to use some such direct physical or 

geometric argument verses a more algebraic one.  The folding arm device is also 

the only one of the three that can be adjusted to draw curves other than ellipses, 

but as it turned out, in the space of time that I spent with each student (two - 

approx. 2 hr. interviews), examining this was beyond the scope of the 

investigation.  After an initial interview, I restricted my questions to the case of 

equal length folding arms.  

 The purpose of the investigation was to create a set of physical tools, and 

then to use that environment to ask a series of questions in a setting where direct 

physical experiments with curves could shape a student's initial beliefs.  This 

investigation focused solely on the second main point of this thesis, i.e. that a rich 

mathematical experience results from giving geometrically generated curves a 

primary epistemic role.  Chapter 2 touched on a broad range of issues connecting 

curve drawing actions to tangents, areas, rates of motion, and computer 

simulations.  The investigation with two students, the subject of Chapter 3, was 

designed to examine the plausibility of using curve drawing devices as a 

touchstone for exploring and contrasting  the mathematical pursuits of students.  

To this end, three elliptical devices were chosen, and the students here were asked 

only about those three devices, and about how (if possible) each one could be set 

up to reproduce curves drawn by another of the three, and how they could be sure 

that the curves were the same.  They were also asked how the action of each device 

might give rise to an equation of the curve.  At no time, however, did I suggest the 

use of any particular coordinate system, origin, axes, or unit of measure.  

 They were asked to justify their assertions in any way that seemed 

convincing to them and with as much detail as possible.  From their own 
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hypotheses, formed directly from their experience with primary curve drawing 

actions, they moved, in different ways, to represent geometric actions with 

algebraic relations.  For both of the students that I will discuss, the ways in which 

they described their sense of the geometric actions strongly shaped the kind of 

algebraic language that they employed.  This was especially apparent in the case of 

the folding arm device.  Although neither of the students attempted a solely 

geometric approach of the sort described in Section 2.9, nevertheless the students 

employed physical geometry in quite different ways.  
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3.2  The Structure and Method of the Interviews 

 The subjects for these interviews were chosen from a single class of New 

York State Regents’ Course Four Mathematics at Ithaca High School in Ithaca, NY 

in the Spring of 1994.  Other than the fact that they were in that class, they were 

not chosen for any special background or ability.  I simply took the first three 

volunteers who were willing to participate in an after school project (one as a pilot 

and two for analysis).  A class presentation had been previously required by their 

teacher, and they were told that after participating in the project, they would be 

free to use anything they learned as possible material for such a presentation.  

They were also paid $5.00 per hour for their time. 

 Course Four Mathematics in New York State is a high school precalculus 

course that is taken by seniors as part of the regular Regents sequence beginning in 

ninth grade with Course One.  Some of the students in Course Four are juniors 

who began an honors mathematics sequence in eighth grade. Most of the juniors in 

Course Four would subsequently go on to take some form of Advanced Placement 

Calculus course in their senior year.  The class from which my volunteers came 

was roughly half seniors and half juniors.  Among all students at Ithaca High 

School roughly half will take Course Four at some time during their secondary 

education. 

 In order to minimize bias in my expectations of these students, I did not 

inquire about the backgrounds, records, and teacher opinions of the students that I 

interviewed until after the completion of the project.  I videotaped two individual 

interviews with each student for approximately two hours per interview.  In each 

case, the second interview occurred one week after the first one.  The students 

were asked not to discuss the project with others until after the completion of all of 

the interviews.  During the week between their two interviews, although they did 
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not have the devices, they were free to work by themselves on any unresolved 

questions, and consult any mathematical source material that they thought might 

be helpful.  I did not, however, provide the students with any references or 

background material until after the completion of the interviews.  The interviews 

were all conducted in the same quiet room at Cornell University with the curve 

drawing devices on one big table.  Besides myself and one student subject, the only 

other person present each time was a video camera-person who was initially 

introduced to the student, but then remained silent throughout the interview.           

 After conducting two pilot interviews with one student, I structured the 

interviews in the following way.  I first showed the student the paper covered 

board and gave them two tacks, an adjustable loop of string, and several colored 

pencils.  I explained how the device worked asked them to draw a curve with this 

device.  I then asked them if they had ever seen such a device (they both said yes), 

and asked them what kind of curve this device produced (they both answered "an 

ellipse").  I then encouraged them to experiment with various positions of the tacks 

and loop lengths.  I asked them how they knew that such a device produced 

ellipses.  Depending on their answers I tried to probe in various ways to see what 

the word "ellipse" meant to them intuitively, geometrically or algebraically.  If 

words such as "focus" or "eccentricity" came up, I asked them what they meant by 

such terms.  I did not introduce such terms until they were used by the students.  If 

they felt unsure as to what such terms meant, I abandoned them and tried to use 

terms that related directly to the physical devices (e.g. using "tack point" instead of 

"focus").    

 I next introduced them to the trammel device which laid on the table beside 

the loop of string device.  I showed them how to use the pen holder and how to 

adjust and lock the positions of both the pen holders and the moveable pin.  I 

asked them if they had ever seen such a motion before and if so in what context.  I 
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then encouraged them to experiment by drawing curves with the device in various 

adjustments.  After some experiments I asked them what kind of curves they 

thought the device was capable of drawing.   

 After some more experimentation, I eventually asked them if they thought 

this trammel device could produce any curves that exactly matched those drawn 

by the loop of string device and vise versa.  I encouraged them to make guesses 

and then try to verify or refute their ideas with experiments.  If they thought a pair 

of devices were capable of drawing some curves that were the same, I then asked 

them if this was always the case for any curve drawn by one of the devices.  In 

particular, I asked if there were any curves that one device could draw that the 

other one could not.  As their experiments progressed I asked them to be as 

specific as possible about how they would go about setting up one device so as to 

reproduce a curve that they had previously drawn with the other device.  I told 

them to feel free to use any other tools that they thought might be appropriate, 

such as string, a ruler, a protractor, a square, or a calculator. 

 Depending on the direction of their responses, I tried to ask questions to 

find out what convinced them that two curves were same.  I tried to discover what 

aspects, parameters, or forms of analysis were important to them.  In particular, I 

tried distinguish to what extent their beliefs depended on physical appearance, 

empirical measurements, geometric properties (such as distances, ratios, similarity 

and angles), or algebraic descriptions (such as equations).  I asked them if it was 

possible to find an algebraic equation for these curves directly from the action of 

the devices.  Following the direction of their inquires, I tried to get them to 

articulate how they coordinated the results of their experiments in these different 

areas, and what representations were most important to them in order to feel 

convinced about their assertions. 
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 After about an hour and half into the first interview the students had all 

made, and partially justified, some series of conjectures, although none of them 

were completely satisfied that the trammel and the loop of string devices were 

drawing exactly the same set of curves.  At that point I told them that we would 

return to these questions, but for now we would look at the operation of a third 

curve drawing device.  I then showed them how to operate the folding arm device 

on the same sheet of Plexiglas on which the trammel had just operated.  I 

encouraged them to experiment with device, and then asked them the same 

general questions as before, both about this new device itself and its possible 

relations with the other two devices.  After some initial experimentation and 

conjectures, I ended the first interview and told them that in one week we return to 

all of these same questions. 

 The structure of the second interview depended on the direction of the 

thoughts of the student.  All three devices were available to them and I stuck to the 

same set of questions that had been raised during the first interview, allowing the 

students to work with the devices in any order or fashion that they chose.  For all 

three devices they were asked to determine:  

(1) Are any of the devices capable of drawing the same curves? 

(2) Is there any curve which one device can draw which another one  cannot? 

(3) How exactly do you go about setting up one device so as to reproduce a 

 curve drawn by another device? 

(4) Is there any way to find an equation of a curve directly from the actions 

 involved in the device used to draw that curve? 

(5) What convinces you of your claims and how would you go about 

 justifying them?  
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3.3  A General Comparison of Two Student Approaches 

 The two students that I will discuss both resolved all of the questions for the 

three devices, but only after considerable effort.  One student, whom I will call 

Tom, came to the second interview with some specific notes that he had made 

during the week which satisfied him concerning the first two devices.  After an 

hour and half into the second interview, he was able to satisfy himself about the 

third device.  The other student, whom I will call  Jim, brought to the second 

interview only a few general notes about the loop of string device.  Jim picked up 

from where he had left off the previous week, and then spent two and one half 

hours, eventually satisfying himself about all three devices.  Much more than Tom, 

Jim seemed to need the physical devices in hand in order to think about them.  He 

paid very close attention to "things that move in proportion," and his physical 

perceptions were astute.  The relative uses by the two students of physical 

empiricism, geometry, and algebra were strikingly different as were their 

conceptions of motion, especially concerning the folding arm device. 

 As I stated earlier, I did not inquire about the backgrounds of Tom and Jim 

until after I had conducted the interviews, however, a few general comments 

beforehand may help the reader to understand the interviews and the conclusions 

that I wish to draw from them.  Some of these general observations are drawn 

directly from what I saw during the interviews, while others come from my 

informal conversations with Jim and Tom, and with their teacher after the 

interviews. 

 Tom was an eleventh grade student who was taking Course Four 

Mathematics as part of an honors program.  He would go on in his senior year to 

take the most difficult Advanced Placement Calculus course that was offered at 

Ithaca High School.  He told me that he intended to pursue a career in 
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mathematics or science.  Tom was described by his teacher as a very good student 

with exceptional algebraic skills.  I witnessed these skills during the second 

interview when Tom tried to find an equation from the action of the folding arm 

device.  With no hesitation he plunged into a whole series of tedious and 

complicated algebraic manipulations never losing track of any of his variables or 

his overall intentions.  Throughout his work he made only one algebraic mistake 

which he eventually corrected himself.  Tom, however, was more hesitant when 

translating his algebraic results back into conclusions about geometry or the 

physical context of motion.  

 Tom felt very comfortable with algebra and clearly preferred it to 

experimentation or geometric language.  He did carry out some very systematic 

and telling physical experiments upon which he based his original algebraic 

statements, but once he had some equations with which to work he preferred to 

stay with them.  Tom was a quiet and soft spoken person who considered his 

actions and words carefully.  He never made wild guesses and his curve drawing 

experiments were very premeditated.  His answers to questions strongly favored 

algebraic over geometric language.  For example, when dealing with the trammel 

device, both Tom and Jim sketched in the same set of similar right triangles, but 

Tom did not use the word "similar," nor did he directly write down any ratio 

statements, nor did he mention the "Pythagorean theorem."  Instead he noted that 

two angles were the same and then wrote down two trigonometric statements 

which he then combined using a trigonometric identity, thereby minimizing direct 

mention of physical geometric concepts. 

 Tom seemed to regard his time in front of the video camera as a kind of test, 

despite my contrary urgings.  He wanted to impress me with his skills, and indeed 

he succeeded.  At times it was all I could do to keep up with his rapid algebraic 

derivations.  When I was driving him home after the interviews he spoke a bit 
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more openly about his feelings and beliefs.  He said that he never believed 

anything in mathematics until he worked through some set of equations to verify 

it.  He told me that he liked most of his high school mathematics program except 

the sections of Course Two that dealt with classical geometry.  This he found very 

boring and unsatisfying, and he was very glad when the focus of his mathematics 

classes returned to algebra.  His teacher confirmed this, and added the observation 

that when the Course Four class had been studying curves whose equations were 

very simple in polar coordinates, Tom had insisted on finding, on his own, 

Cartesian equations of these curves despite their enormous complexity.  It was as if 

Tom saw polar equations as some sort of geometric trick, and would not be 

satisfied that the curves had been properly defined until he saw a Cartesian 

equation.  

 Jim was a twelfth grade student taking Course Four Mathematics.  Several 

times during the interviews Jim described himself laughingly as a "terrible 

student," and said that if his teacher "saw these videotapes he would probably be 

horribly embarrassed."  His teacher described Jim as a fair to average student who 

had to struggle hard to keep up with his work.  Jim's teacher also found him to be 

very helpful and cooperative in class.  He was a very open, friendly and talkative 

person which made it easy to interview him.  He talked almost constantly about 

what he was doing and thinking with little or no prodding.  He seemed to have no 

inhibitions about being videotaped. 

 Jim expressed a strong preference for geometry over algebra, and most of all 

he liked physical experimentation.  He said that he really enjoyed "fooling around 

with stuff."  He said that he was fascinated by engineering and that he might 

eventually study it (I have since found out that Jim chose not to take up 

Engineering in college).  He told me that he wished that there could have been 

more geometry in Course Four, and that he had really enjoyed the geometry 
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sections of Course Two.  Jim obviously enjoyed experimenting with the curve 

drawing devices, and rapidly generated and rejected a whole series of conjectures 

about how they might relate to each other.  Although many of his guesses seemed, 

at first, a bit wild and random, his overall pattern of refining his experiments 

showed an astute sense of geometric proportion and invariance.  He voiced many 

guesses based on things which were visually and physically suggestive to him and 

in the case of the trammel he immediately saw that it operated in much the same 

way as a desktop toy that he owned known as a "B. S. grinder."     

 Jim openly admitted that he easily got lost in algebra, and that he found it 

very boring.  He said that he wished that his algebra skills were better, and he 

thought that this was something he would "have to work on."  During his second 

interview, Jim eventually expressed algebraically, proportions that he had found 

from the geometry of the trammel device and the folding arm device, but both 

times when I asked him if these equations were equivalent to the one that came 

from the loop of string device he paled at the thought of having to attempt an 

algebraic reduction.  His usual cheerful demeanor seemed to darken abruptly.  I 

told him that he did not have to do this, and I reminded him that he was free to 

end the interview whenever he wished, but he said that it would it give him some 

real satisfaction to see the algebra "come out."  He asked me to watch his algebra 

carefully, because he knew that he would make mistakes.  Sometimes he even 

predicted in advance exactly what type of algebra mistakes he was prone to make, 

and then proceeded several minutes later to confirm his predictions. 

 I asked him how important it was for him to see the algebra "come out" in 

order for him to believe that the devices were drawing the same curves.  Jim said 

that he had made a big jump in his belief based upon his procedures for  

reproducing the curves visually, and that the algebraic confirmation was just one 

more little step.  He gestured geometrically with his hands showing the big jump 
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and the little step.  He then estimated the proportions in his gesture at around 8 to 

2 and laughed.  Jim had very little confidence in his own algebraic skills, and this 

seemed to transfer over somewhat to his confidence about algebra in general, yet 

he still wanted to see the algebra confirm what he had learned from his 

experiments.  When he got frustrated, he directly asked me for some algebraic 

advice, and I offered him a few procedural hints.  Once he had corrected and 

completed his algebra he had no trouble interpreting the results back in terms of 

the physical reality of the curve drawing devices.  
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3.4  Tom's First Interview 

 I began by showing Tom a large paper covered board into which I put two 

tacks and then placed over them an adjustable loop of string and then 

demonstrated how to draw a curve by keeping the string taut with a pencil.  I did 

not actually draw a curve, but only indicated the action on a small section keeping 

the pencil slightly above the paper.  I told him to feel free to experiment with this 

device in any way that he wished, and that I was interested in what kinds of 

curves could be drawn with this device.   I asked him if he had ever seen such a 

device and he nodded yes.  Before he drew any curves, I asked him what he knew 

about this device and he answered: 

T:  You can draw ellipses with that. 

D:  Is that all that it draws? 

T:  That's all that I've seen it used for. 

D:  What's your definition of an ellipse? 

T:  An ellipse is all the set of points ... ummm...... There's the two Foci here (points 

at the tacks)  and these two (points at the string lengths out to the tacks) always 

have to add up to the same thing..... and all the set of points that qualify that, that's 

the ellipse. 

D:  And that's  pretty much your definition of an ellipse? 

T:  yeah.....pretty much 

D:  Do you know any other way to describe an ellipse? 

T:  Oh yeah.... something to do with eccentricity less than one,  I think. 

D:  What's eccentricity? 

T:  I don't remember......but it has to be between zero and one. 

D:  Do you have any vague or intuitive memories of what eccentricity is? 
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T:  It has something to do with.....like..... how spread out the sides are of a type 

of.....uhhhh.... conic section  (gestures with his hands). 

D:  How spread out? 

T:  Like the hyperbolas would have a high eccentricity so they would spread out 

very far  (gestures to indicate a very flat curve)........and then the parabola would 

be exactly one........ 

D:  And you said that ellipses would be between zero and one? 

T:  yeah 

D:  OK so it's some kind of measure of spread-outness? 

T:  yeah........ a ratio I think. 

D:  a ratio between what? 

T:  I don't know 

 Despite my encouragements, after five minutes Tom was still hesitant to 

actually draw an ellipse with the loop of string, so I reminded him that I was 

interested in having him explore the actual physical curves that could that could 

be drawn with this particular apparatus given control over where to put the tacks 

and how to adjust the string.  I asked him if the particular device on the table could 

draw all possible ellipses or just some special type of ellipse. 

T:  It would be able to draw all of the ellipses.... as far as the string is long. 

 As Tom still made no move to actually draw an ellipse with the loop of 

string, I next showed him how to operate the trammel curve drawing device, but I 

did not draw any curves.  This time he seemed quite ready to try the device, but 

before he did I asked him if he had ever seen a device like this one before, or if he 

had any idea what kind of curve it might draw. He said he had no idea, so I let 

him experiment with it.  He drew one curve using the pen holder between the pins 

closer to the horizontal one.  He then moved the pen holder closer to the vertically 
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moving pin and drew another curve with the pins in the same position.  These 

curves are labeled 1 and 2 in Figure 3.4a 

T:  Looks elliptical to me. 
 

 
          Figure 3.4a 
 

 Tom then increased the distance between the pins leaving the pen holder 

fixed and drew another curve (labeled 3 in Figure 3.4a). 

D:  What about those last two..... what changed? 

 (long pause as Tom studies the figure) 

T:  It sort of dilated...... this way  (gestures vertically)...... I stretched it out.  
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 Tom then moved the adjustable pin so as to decrease the distance between 

the pins, again leaving the pen holder in the same position and drew a fourth 

curve (labeled 4 in Figure 3.4a)   

T:  The closer this pin is to that one the more compressed it is. 

 Tom then asked me if I remembered the order in which he had drawn the 

curves, and since they were all the same color I was not exactly sure.  I offered him 

another colored pen and an eraser.   He then erased these curves, and drew two 

new ones which confirmed his idea that shortening the trammel while leaving the 

pen holder fixed between the pins fixed would compress the shape of the curve.  

These new curves looked much like 3 and 4 in Figure 3.4a.   I asked him if these 

curves still looked elliptical to him and he looked at them for a while. 

T:  Well I could try to draw them with that (indicating the loop of string device). 

D:  Do you think you could copy one of these with that device? 

T:  Well..... if this is an ellipse...... 

 I encouraged him to experiment and he eventually took the loop of string 

and the tacks, and put them on the Plexiglas.  Tom then said there was no way to 

stick the tacks in the Plexiglas, so I offered to hold the tacks in any position that he 

wanted while he used the string to draw a curve on the Plexiglas.  He told me to 

hold the tacks in one of the pin tracks at equal distances from the intersection of 

the tracks.  He experimented several times telling me where to hold the tacks as he 

adjusted the loop of string.  Eventually he succeeded by trial and error in tracing 

with the loop of string one of the ellipses that he had previously drawn with the 

trammel.   

 (The interview has now gone on for 17 min.)  

T:  That looks pretty close.  I think if we made the foci exactly where they should 

be, it would be exactly the same shape. 
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 I then asked him if could come up with any systematic way to reproduce a 

curve drawn  by the trammel with  the loop of string, or vise versa how to 

reproduce with the trammel a curve drawn by the loop of string.  I said for 

example that if someone told him exactly how the trammel device was set up, 

could he figure out how to place the tacks, and adjust the string so as to draw the 

same curve.  Vise versa, I asked him  if someone told him how far apart they had 

put the tacks and how long a loop of string they had used could he tell me how to 

set up the trammel, if possible,  so as to draw the same curve.  I was trying to see if 

Tom could explore or systematize the physical experiment which he had just 

carried out, but after thinking for a minute he offered some general guesses as to 

how he might go about analyzing the two curve drawing devices. 

T:  I remember that for this one (indicates loop of string) when we did an analysis 

of how this worked in class..... it was.... like the distance formula between the foci 

and the point and then you do all kinds of algebra with it and then it come out into 

a neat equation.... 

� 

x
2

a  plus 

� 

b
2 over whatever equals uhh.....one.   Yeah......and so 

....ummmm.... I don't know.... maybe there's some type of analysis to do on that 

(indicates trammel device)......  It seems like........ what we're doing in class right 

now is working with parametric equations... like 

� 

x  and 

� 

y  independent according 

to time.......This seems kind of similar.  This seems like the 

� 

x  is moving and the 

� 

y  is 

moving (gestures towards the  trammel's pins moving in the tracks) and if there 

was some way of getting 

� 

t out of the equation and going back to the non-

parametric equation.... just a function of 

� 

y . 

D:  OK so this thing (trammel device) somehow looks parametric to you? 

T:  Something like that, yeah. 

D: It looks like that might be a way to approach analyzing this device?  

parametric? 

T:  Yeah. 
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 Note here that Tom seems to have essentially reinterpreted my questions 

about how to map direct physical settings of the devices in order to reproduce 

curves.  He interpreted them as calling for an algebraic map between the devices.  I 

asked Tom for more details concerning his analysis of the loop of string device.  In 

particular, I asked him what 

� 

a  and 

� 

b  in his equation represented, and how they 

might relate to actual curve drawing.  After some struggling he eventually told me 

that they represented the lengths of the axes or perhaps half of the axes he wasn't 

sure which.  I then asked him if he could draw with either device a curve with 

specific length axes; say, for example, a semi-major axis of 12 in. and a semi-minor 

axis of 5 in. (I did not use these terms I pointed at curves to indicate what I was 

asking).  Tom said that he had no idea how to use the trammel, but that he could 

do it with the loop of string. 

 He explained to me how the two lengths in his equation (

� 

a  and 

� 

b) and the 

distance from the center to the foci would form a right triangle, and that he could 

double this to determine the distance between the two tacks.  This seemed to come 

from his memory, and he did not immediately offer an explanation.  Tom started 

out by writing the equation: 

� 

c
2

+b
2

= a
2, and then putting in the numbers that I 

gave him (

� 

b = 5  and 

� 

a =12), and solving the equation to find that 

� 

c = 119 =10.9 in.  

He then placed two tacks in the board each 10.9 in. from a marked center along a 

line.  He then placed the loop of string over the tacks to form an isosceles triangle, 

and adjusted the size of the loop empirically until this triangle had a height of 5 in.  

He then drew the ellipse and checked that the vertices along the horizontal were 

12 in. from the center.  He seemed pleasantly surprised that the algebraic relations 

that he had remembered had worked out in this physical context.  Tom was not 

entirely sure that they would work, since he had never before tested this 

knowledge in a physical setting.  
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 I then asked Tom to clarify what he had said previously about knowing 

how to find an equation for this ellipse.  He then told me that the general equation 

of such a curve was 

� 

x
2

a2
+
y
2

b2
=1, and that in this case the equation was 

� 

x
2

144
+
y
2

25
=1.  

He said that he had learned this in his math class. 

 I next asked Tom to try to draw something as close as possible to this same 

curve using the trammel device.  He did not experiment at first, but instead began 

talking about parametric equations, and what he had learned by experimenting 

with a graphic calculator in its parametric mode.  Throughout this first interview, 

Tom felt that the action of the trammel device had some direct connection with 

parametric equations.   Eventually he began experimenting with the actual device.   

After looking at the positions of the trammel when the pen was crossing the tracks, 

he then said that he could reproduce the curve by setting it up so that the pen was 

five inches from the fixed pin, and then placing the other pin twelve inches from 

the pen.  (See Section 2.9.)  Tom then drew the curve and said that it looked like the 

one that he had drawn with the loop of string.  He always used the pen holder that 

was between the two pins.   

 (The interview had now lasted for 36 min.) 

 I then asked Tom to try to provide some sort of argument for why these two 

curves coming from two different actions might be the same.  Since he had already 

written an equation for the loop of string device, I asked him how that equation 

was related to the action which produced the curve.  He said that he thought he 

could explain that.  He chose an "arbitrary point on the curve, 

� 

(x, y)" and then 

labeled the midpoint between the two foci as (0,0).  He labeled the foci as 

� 

(c,0)  and 

� 

(!c,0) .  He went on to explain that since the loop of string had a constant length, 

he could use the distance formula to write down the distances from the foci.  He 

wrote that: 
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� 

(y ! 0)
2

+ (x ! c)
2

+ (y ! 0)
2

+ (x + c)
2

= 2a,  or 4a   

When I asked him a question about right triangles in his figure Tom gave me a 

puzzled look.  He did not see these radicals as coming from the Pythagorean 

theorem.  He viewed it solely as a "distance formula." 

 Tom showed, from the action of the device, that the sum of these two 

distances must be equal but he was not quite sure what that constant was.  He said 

you had to write it as 

� 

2a  or 

� 

4a  "because it's convenient to do that, and it simplifies 

nicely later."  Tom said that you had to "do lots of algebra," and that eventually the 

equation would turn into: 

� 

x
2

a2
+
y
2

b2
=1.  When I asked about the meaning of the 

letters 

� 

a , 

� 

b , and 

� 

c ,  he said that "you have to introduce 

� 

a  and 

� 

b  somewhere along 

the line."  He then said the 

� 

a 's in both equations were the same and that 

� 

b
2

= a
2

! c
2 , from his previous relation, and that somewhere in the algebraic 

derivation he would make this substitution.  He said that he thought he could go 

through the algebra, and figure out the details, and that would tell him whether he 

wanted 

� 

2a  or 

� 

4a  in the original distance formula equation.  Since he seemed to be 

remembering something that he had seen in class I did not press him for further 

details.  Tom showed no inclination to check the value of the constant sum of the 

two distances geometrically from the string in the device.  The value of the 

constant on the right side of the distance formula equation was solely a matter of 

algebraic convenience for Tom. 

 I then asked Tom to return to the trammel device and try to see whether he 

could do something like what he had just done for the loop of string device.  I said 

that he had shown me how his equation involving the distance formula had 

described the action of the loop of string device.  I asked him if he could see any 

way to find an equation of the curves drawn by the trammel device "from the 

nature of the device."  Tom  then began to slowly and carefully move the trammel 
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over the curve that he had previously drawn.  He reiterated what he knew about 

setting up the lengths a and b on the trammel, and then engaged in some more 

slow and careful motion of the trammel along the same curve.  He did not draw 

any new curves but seemed very thoughtful about the action of the device, and 

how it traced the curve.  He mumbled to himself a few vague thoughts about the 

relative rates of movement of different part of the trammel, and then lit up and 

began speaking once again about parametric equations.    

(The interview had now lasted 49 min.) 

T:  Oh yeah, I remember.... the parametric equation of the circle was.... it works like 

this........... It (his calculator) would ask you for graph of

� 

x , 

� 

y ...  like this ... and for 

� 

x  

you want the cosine of 

� 

t, and for 

� 

y  you want the sine of 

� 

t.  

(Tom writes:  Graph 

� 

(x, y) = (cos t, sint)  ) 

T:  This would be a circle so to make this (the curve drawn by the trammel)  I guess 

you would want..... if this is 

� 

x  and this is 

� 

y ....  5 inches cosine of 

� 

t, and 12 inches 

sine of 

� 

t. 

(Tom writes:  Graph 

� 

(x, y) = (5cos t, 12sin t) ) 

D:  So you think that that might be the appropriate parametric equation of this? 

T:  It seems that's how it's working, yeah. 

D:  So what justification could you give me? 

 Tom explained to me why using just sine and cosine would give a circle, 

and then turned to his second parametric equation . 

T:  All I'm doing right here is dilating the circle five out here, and twelve out here, 

and the ellipse looks sort of like a dilated circle, because the circle's equation is 

� 

x
2

a2
+
y
2

b2
=1 where the things under here are the same, whereas in the ellipse the 

things under 

� 

x  and 

� 

y  are different. 
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D:  I'm going to be a skeptic, I can see that this might go with the 5 and the 12 (I 

point to the places where his trammel drawn curve crosses the axes),  but the 

points in between..... how do we know that this (his parametric equation) gives 

points on this curve? 

 Tom then began plugging in some values of t into the parametric equation.  

After checking the intercepts, he chose to check 

� 

t = 45̊  , because he knew that the 

sine and cosine were both equal to 

� 

2 2 .  Using his proposed parametric equation, 

he then calculated that there should be a point on the ellipse at roughly (3.5, 8.5).  

When he went to check for it on the curve, I realized that he also believed that this 

point would be 45˚ off the x axis.  Using a ruler he found that the point (3.5, 8.5) 

was approximately on the curve but that the angle was more like 65˚. 

T:  Well on the circle it would be 45 degrees but maybe on the ellipse it's slightly 

different... how I'm going to account for that I don't know.....  It makes sense that it 

would be slightly different in an ellipse because its stretched out... I don't know 

exactly how. 

D:  So the angles don't seem to be checking but at least in terms of the numbers.....? 

T:  Basically this ellipse is just the dilated coordinates of the circle, and so the angle 

measurement will work for the circle, but once I dilate it this angle will be off.  

(Gestures with his hands to show the how the point is stretched away from the 

45˚.)  

 I briefly summarized Tom's claims thus far, and then asked him again how 

his parametric equations related to the action of the trammel device in the sense 

that the distance formula equation related to the action of the loop of string. 

T:  I think it will be easier if we just draw a circle. 

D:  Can this device draw a circle? 

T:  It should be able to.... if I just make a and b equal.  
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 Tom then erased the Plexiglas and adjusted the trammel so that the pins 

were 12 in. apart and the penholder was halfway between them.  He predicted that 

he would get a circle of radius 6 in.  He then drew the curve, and said that it 

looked circular.  Looking at where the pen crossed the axes he showed that the 

radius must be 6 in.  I asked him what his definition of a circle was and he said "all 

points equidistant from a center point."  Once again I challenged him by saying 

that I could see that when the pen crossed the axes it was 6 in. from the center, but 

how could we be sure about the points in between.  He then began slowly moving 

the trammel and watching the pen trace a quarter of his curve.  He began 

measuring the sides of the right triangles formed by the pins and the tracks with a 

ruler.  He eventually said that these triangles all have the same hypotenuse of 12 

in., and that the pen was always on the midpoint of that hypotenuse.  He decided 

that it must have "something to do with the trigonometry of these triangles."  He 

looked at various angles that the trammel made with the horizontal axis.   

 Eventually he told me that the 

� 

y -coordinate of the pen would always be 

half the distance of the vertical pin from the center and the 

� 

x -coordinate of the pen 

would always be half the distance of the horizontal pin from the center.  He said 

that the sum of the squares of the pin distances would always have to be equal to 

� 

12
2

=144 .  He said that that was "pretty much the equation of a circle," and so the 

pen was just being "compressed by half." 

 When I asked him why  the coordinates of the pen were always half of the 

pin distances he wasn't sure what to say.  His gestures made it apparent that he 

had a clear insight into the action of the device, but he could not (or would not) 

express himself in geometric terms.  I expected him to say that the triangles that he 

was looking at were similar or proportional as his gestures indicated.  Throughout 

both interviews Tom never used the words "similar triangles" or "proportional."  

This made it much more difficult for him to express certain relationships like the 



    

David Dennis Curve Drawing Devices http://www.quadrivium.info  
 

229 

one here.  Tom was extremely fluent algebraically (as one can see in the second 

interview), but when he had to express geometric proportions his gestures were 

clear, but he did not know what to say.  After asking him about this three times I 

felt that he was getting flustered, and so I said that I understood what he meant 

and let it go.  

 Tom then said that if he let 

� 

x  and 

� 

y  be the distances of the pins from the 

center that since the trammel was 12 in. long then 

� 

x
2

+ y
2

=144 .  The coordinates of 

the pen would then be 

� 

x

2
,
y

2

! 

" 

# 

$ 
 and then 

� 

x
2

4
+
y
2

4
= c

2 , and then

� 

c = 6 in., so it would 

be a circle of radius 6 in. 

 Our time was growing short, so I said that we would return to this device 

one week later during the second interview.  I next showed Tom how to operate 

the folding arm device.  After some experiments Tom had some good ideas about 

how to adjust the device so that the axes of the curves would be certain lengths.  

He said that he thought that this device was more related to the loop of string 

device than to the trammel device.  He then said of the folding arm device, "This 

has something to do with eccentricity."   

 I told him that I was particularly interested in the case when the lengths of 

the two folding arms were equal.  I said that I would like to ask him in more detail 

about that case, and also about the first two devices when he came back in one 

week.  In particular I told him that I was interested in how he would know when 

the curves drawn by different devices were the same, and also how the action of 

these three devices might generate equations. 

 I then asked him if had any other specific thoughts about any of the three 

devices.  For the remainder of the interview he talked about the concept of 

eccentricity, and how he had seen it displayed in computer animations.  When I 

again asked him to define what he meant by eccentricity, he showed me a method 
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for generating discrete sets of points on conic sections of any pre-specified rational 

eccentricity.  The method involved using equally spaced concentric circles, and 

parallel lines, and was closely related to the curve drawing methods of Ibn-Sina 

described in Section 2.2.  Tom was a little unsure of the definition of eccentricity, 

and asked if he could consult his notebook.  He showed me a worksheet from his 

math class that plotted a finite number of points on various conic sections with 

rational eccentricities.  This involved using a directrix line.  Tom said if you knew 

the eccentricity of the curve you could use the distance formula to find its 

equation.   

 After he talked about eccentricity for a few minutes I asked him what was 

the eccentricity of the curve that he had drawn with the loop of string where 

� 

a =12 in. and 

� 

b = 5 in. Tom tried in various ways to relate his homework sheet to 

this curve, but he never could come up with a clear answer.  Finally he said that he 

could not figure this out because he did not know where the directrix was.  He 

worked very hard for about 15 min. to figure this out.  He tried to work backwards 

from the homework sheet to figure out the relationship between eccentricity and 

the lengths of the axes and focal distance.  At one point he said that eccentricity 

might just be 

� 

c a  but he then rejected that idea.  In the context of the homework 

sheet Tom could generate discrete points on curves with a given eccentricity, but 

he could not transfer that idea to curves that had been generated by another 

method even for the loop of string which was familiar to him.  Tom was familiar 

with generating curves from given algebraic parameters, but he could not easily 

reverse his thinking when those parameters had to be determined from preexisting 

curves.  When Tom returned a week later he abandoned his attempts to use 

eccentricity as tool for understanding these curve drawing devices. 

 I think Tom's teacher went further than most in his attempt to give his 

students a visual and geometric idea of eccentricity.  Many teachers simply define 
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it as 

� 

c a  and leave it at that.  Perhaps such a straightforward algebraic statement 

would have been clearer for Tom given his algebraic preferences.  His instincts 

about eccentricity being a measure of how spread out a curve is were very well 

described, and I found it surprising that he could not measure it in a broader 

context.  I think that this was related to his general reluctance to use geometric 

language, and to connect such language to exact statements about ratio and 

proportion.  When Tom returned a week later he resolved all of the questions that I 

asked about the curve drawing devices, but his uses of geometric ratios are all 

indirect and cloaked in algebra and trigonometric identities which make his 

derivations more complicated.  He never returned to his discussion of eccentricity.  
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3.5  Tom's Second Interview 

When Tom returned a week later for a second interview he brought with him his 

own written notes (see Figure 3.5a and 3.5b) on why he thought the trammel 

device drew ellipses.  Even before I could turn on the video camera he cheerfully 

announced that he had figured out how the trammel worked.  When the camera 

was on he began explaining his notes to me. 

T:  I figured out why this (picks up the trammel) would make the ellipse. 

D:  Tell me what you thought about. 

T:  I did this algebraically. 

Tom  picked up the trammel and put it in the tracks and began labeling things on 

the Plexiglas using the notation from his notes (Figure 3.5a).  He reconstructed for 

me the figure and the equations that appear on the right side of his sheet (Figure 

3.5a).  He was not simply copying things from his notes, but truly reconstructing 

them since he hardly looked at his notes, and on the Plexiglas, he reversed the 

roles of 

� 

f ! l  and 

� 

f (1! l) , from how they appear in his notes.  His equations on the 

Plexiglas stayed consistent with his labels there. 

 He seemed excited to show me his work, but he showed no inclination to 

draw a curve, and avoided as much as possible using geometrical language.  I had 

to stop him, and ask him to actually draw the curve that he was analyzing.  In his 

own notes there is a figure of the trammel, but no curve appears.  Note that he 

designated the position of the pen on the trammel by using an algebraic notation 

for proportion (i.e. 

� 

f ! l  and 

� 

(1! f ) l ) instead of using geometric lengths.  Note also 

the abundance of variables in Tom's set up especially his use of 

� 

! x , 

� 

! ! x , 

� 

! y , and 

� 

! ! y . 

A major difference between Tom and Jim is Jim's reluctance to introduce 

intermediate variables, while Tom never hesitated to introduce algebraic variables.   
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   Throughout his description he never used the term "similar triangles."  He 

did say that the two marked angles were the same because of parallel lines and he 

quoted the standard trigonometric definitions, e.g. "cosine equals adjacent over 

hypotenuse."  When he formed his equation by substituting into

� 

sin
2
! + cos

2
= 1, he 

said that he was "using the Pythagorean theorem as a trig. equation."  Other than 

that, he used no geometric language.  Tom is not really using the angle 

� 

! � as  a 

parameter in his analysis.  The angle along with the trigonometric functions serve 

as means to avoid mentioning similar triangles, and yet still arrive at the 

equivalent ratio statements.  The trigonometric functions are mentioned as  codes 

for ratios, and then immediately disappear by substitution.  Later in this interview 

one can see how Tom used this same approach as he worked with the folding arm 

device.  
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    Figure 3.5a 
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 I tried to get him to explain how he came up with his idea, and he told me a 

little bit about his original attempts to use the equation of the line of the trammel.  

He told me that he struggled with various algebraic forms for the equation of this 

line and that he eventually began writing it using the 

� 

sin!  and the 

� 

cos! .  This got 

him thinking in terms of trigonometry and then he found the elliptic equation 

without using the equation of the line.  On the left side of his notes (Figure 3.5a) he 

wrote down various forms of these linear equations for the trammel line that he 

had looked at before he arrived at his method for finding an equation of the path 

of a point on the trammel.   

D:  Could you tell me,.... or could you reconstruct for me how you came up with 

using the trig. identity and these triangles to see it? 

T:  This is like my final version, my rough draft was much messier.......  Well first I 

tried to figure out what the equation of the line would be (indicates the line of the 

trammel)......  And I got all confused in that, and I came up with the equation 

which was 

� 

! ! y =  l "sin# " 1$
! ! x 

l " cos#
% 

& 

' 

( 
 (see Figure 3.5a)  and that didn't help me at 

all. 

 I asked him if he had used the concept of eccentricity in his work on this 

problem 

D:  We had a long discussion last time about eccentricity... 

Y:  (interrupts) I couldn't find anything anywhere. 

D:  So eccentricity seemed not to be a helpful idea here? 

T:  No it didn't help me,  I couldn't find anything anywhere. 

D:  So you never worked on that further? 

T: No. 

 I asked him if his equations fit with the results of his experiments from last 

time, and told me he had tested a few examples.  He then described what appears 
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on second sheet of the notes that he brought (Figure 3.5b).  He said that his 

equation fit perfectly with what he knew about the device in terms of how the 

lengths of the axes corresponded to the lengths on the trammel.  His idea of a test 

was a mental visualization, and did not involve any actual curve drawing.  To be 

sure of what he was saying, I did ask him to demonstrate his example for me by 

drawing with the trammel the curve that appears in his notes where 

� 

a =11 in. and 

� 

b = 6 in. He did this for me but it seemed unimportant to him. 

 
 
    Figure 3.5b 
 

 Finally I asked him about what really convinced him that the first two 

devices were drawing the same curves, and he indicated his equation.      

D:  So that (his equation of the ellipse) convinced you that the loop of string and 

the two tacks draws the same curves that this (the trammel) draws. 

T:  Yeah, you just replace this and this (points to the denominators in his equation 

from Figure 3.5a) with 

� 

a
2  and

� 

b
2.  

D:  Is this equation a thoroughly convincing thing to you? 
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T:  Yeah (nods with an air of finality). 

(The interview had now lasted 15 min.) 

 I next asked Tom to consider again the folding arm device with the lengths 

of the two arms set equal to each other.  I asked him if could determine what kind 

of curve this device could draw.  In particular I asked him to compare the curves 

that it drew to those drawn by the other two devices.  Tom erased the Plexiglas 

and began experimenting with the device leaving the length of the two folding 

arms fixed, and moving the pen closer and closer to the hinge.  He drew four 

curves as shown in Figure 3.5c.  Near the vertical track the two arms collide it is 

only possible to draw the entire curve by lifting one arm over the other and 

continuing on the other side.  Only for the last curve did Tom eventually draw the 

other half.  Tom studied these and then slowly moved the arm back and forth 

carefully watching the action as it traced back and forth over a piece of the curve. 

 Tom then began looking at the lengths of the axes in the last curve that he 

drew.  He placed the arms so that they were both laying flat on the horizontal 

track and then folded them up as close as they would go to being vertical and on 

top of each other.  He then folded them back flat onto the horizontal track, 

studying where the curve reached its horizontal and vertical extremes.   
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   Figure 3.5c 
  

T:  Well if this was an ellipse...... then the length between here and here would be 

the "

� 

a" (indicates the semi-major axis)....... and.......... this length (semi-major 

axis)...... minus twice this length (indicates the distance from the hinge to the pen) 

would be the "

� 

b ." 

D:  Well, is there some way we could be sure what kind of curves these are? 

T:   (moves the stick back and forth slowly over the curve and begins speaking 

very softly to himself)  What's changing?...... hmmmm.......  This distance is 

changing (indicates the distance from the center to the pin in horizontal track).......  

The fact that this bends (points to the hinge) makes it different.... 

D:  Different? 

T:  Yes different....  More difficult for me to visualize........  Well... maybe I could try 

to do the same type of analysis..... 

 Tom then erased all four curves and placed the folding arms back on the 

clean Plexiglas and contemplated its motion in the first quadrant again.  He then 

stopped the arms in an intermediate position and began writing labels on the 

Plexiglas.  He began as before by labeling the position of the pin moving in the 
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horizontal track as 

� 

( ! x ,0) .  He next labeled the position of the hinge between the 

two arms as 

� 

! x 2, ! y ( ) .  When I asked him how he knew that that hinge would 

always have half the 

� 

x -coordinate of the moving pin Tom  indicated the two equal 

length arms.  I pressed him for more justification in an attempt to elicit some 

geometric language from him.  He gestured that this was obvious, and when I 

asked him again he drew a vertical line from the hinge to the track and said that 

the two triangles were the same.  I then asked him why they were the same. 

T:  Side angle side..... So there! 

Tom 's tone seemed to imply, "Why are you bothering me with these silly 

geometric details, can't you see I'm trying to work on this!"   so for a while I 

stopped asking about such details and let him proceed. 
        

      
    Figure 3.5d 
   

 As before he labeled the point on curve (i.e. the pen holder) as 

� 

! ! x , ! ! y ( ) , and 

let the lengths of the two equal arms both be l.  He then began to consider the 

circular path of the hinge pin at 

� 

! x 2, ! y ( ) .  He then began thinking about his 

experiments with moving the pen holder.  Tom pointed out that if the pen were on 

the hinge it would draw a circle, while if it were moved all the way down to the 

pin it would just trace a line segment. 
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T:  The degenerate thing for a circle as a conic section was a point.... but for 

ellipses..... let's see......What's an ellipse?..... an ellipse is when you cut it at an 

angle.......  it would still just be a point.  I don't see how it would be a line.... I don't 

know...... How would I make an ellipse with 

� 

a 's  and 

� 

b 's  and have it form a line?  I 

don't see it...... I guess I could have 

� 

b = 0  and

� 

a = ......  whatever..... 

 Tom drew a crude sketch of an elliptic slice of a cone and thought about 

how to slice it so as to get very long and thin ellipses.  He eventually thought 

about slicing it right through the apex and along one side to get a line.  

T:  The moment that I get right here (indicates his sketch of cone being sliced 

through the apex along one edge).... then it would be infinitely long .... but this has 

endpoints (indicates degenerate case on the folding arm device when the pen is at 

the pin). 

D:  So that bothers you? 

T:  yeah. 

D:  It looks somehow different? 

T:  um  hmm. 

(The interview had now lasted 33 min.)  

 Tom  decided to return to his analysis of the folding arm device, not sure at 

all what kind of equation it might produce.  He had some serious doubts about 

whether these curves were ellipses.  Several times during his algebraic analysis, 

Tom was quite willing to believe that he had proved that these curves are not 

ellipses. 

T:  I guess I could try the same trick as last time. 

Tom finished labeling his figure and then began talking to himself sometimes 

inaudibly.  

T:  So what is the difference between this and the previous one?......In this one the 

entire line moves over...... in addition to going like that (indicates a trammel type 
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of motion by gesture)..... you see?.......  In that one it was just the line part going 

like this (picks up the trammel and demonstrates it's motion) and changing the 

slope..... In this one it does the same thing but also moves at the same time 

(gestures to indicate that the outer arm of the folding arm device with the pen 

moves like a trammel, but with an additional horizontal motion).  So... ummm..... 

wait.... but I know that the uhhh...... the distance between the beginning of this line 

and the origin will always be one half of the total. 

D:  Beginning of which line? 

T:  This one right here (indicates vertical line dropped from hinge). 

(long pause) 

T:  Well OK... so I can assume that without the movement, this is just going to be 

the formula for the same one.   

 At this point Tom began writing a sequence of algebraic statements based 

on his vision of the folding arm device as a combination of two movements.  The 

first being the trammel like action of the outer arm on which the pen is riding, 

while the central pivoting arm adds a second horizontal motion.  He began by 

copying down his equation for the trammel and then trying to figure out how to 

account for the second horizontal motion caused by the pivoting arm.  Tom wrote: 

� 

! ! x 

f " l
# 

$ 
% 

& 

' 
( 

2

+
! ! y 

(1) f ) " l
# 

$ 
% 

& 

' 
( 

2

=1  

T:  But then I think I'll have to add something else here (points to the 

� 

x  in the 

equation). 

D:  So now your trying to see this stick as the same as the other stick but with... 

T:  With some type of translation...... 

Tom gestures to indicate a trammel on a moving wall.  

D:  So now you're going to take... 
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T: The equation for this point (the pen) with respect to that line (a vertical line from 

the moving hinge point).... and how that moves (gestures again) .... is just like that 

(points to his equation).... but also (gestures for the forward motion)..... 

D:  But add on a translation? ..... OK ...... well what translation would you try to 

add on? 

T:  The translation would always be..... well OK...... it would always be..... I don't 

want to put it in terms of

� 

! x .  I'll put it in terms of 

� 

! ! x .... and I know that... hmmm.... 

How do I do that?  (long pause) 

D:  Are these (the variables in his equation) really the same now as what you had 

in this device? (the trammel). 

T:  It seems to me. 

D:  Tell me why you think these are the same. 

T:  It's basically the same triangles... these are the coordinates...and.... the same 

angle (points at right half of Figure 3.5d, and gestures as if to move the whole right 

side of the diagram over to the origin). 

 I questioned him about some of the details and what his variables 

represented, and he insisted that the same derivation that he had used on the 

trammel was valid here if he could find the correct translation. 

D:  Are these really the same?  The stuff that you showed me before would work 

on these two triangles?   

T:  It works the same way..... But what would I move it by?..... hmmm 

 At this point I did not really understand where Tom was going with this 

approach.  I could not see any way to express the kind of translation that he was 

thinking of.  I asked a few questions trying to return the discussion to the physical 

geometric action involved in the device.  These questions were entirely irrelevant 

to what Tom was trying to do.  He patiently answered them, but gave me a look 

that said "So What! why are you asking me this?"  I knew of at least four different 
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analytic approaches to this device, and my own preconceptions temporarily 

blocked my understanding of what Tom was attempting.  After two or three 

minutes Tom ignored me, and abruptly returned to what he was trying to do, and 

I let him proceed.  Soon, I was to learn another way to analyze the folding arm 

device. 

 Tom decided to begin by solving for 

� 

! ! y  in the equation that he had taken 

from the trammel device.  He began by letting 

� 

a = f ! l and 

� 

b = (1! f ) " l .   

T:  I'm going to work this into a function because its hard for me to see this. 

Tom wrote: 

� 

! ! y 
2

b2
=1"

! ! x 
2

a2
 

  

� 

! ! y 
2

= b
2

"
b
2

! ! x 
2

a2
 

  

� 

! ! y = ± b
2

"
b
2

! ! x 
2

a2
 

T:  I also want to translate the 

� 

! ! x  by 

� 

! x 2 . 

D:  Why did you want solve this for 

� 

y ? 

T:  Because it helped me to see it. 

 Tom proceeded to put in the translation straightforwardly by replacing 

� 

! ! x  

with 

� 

! ! x " ! x 2 .  He said that he wanted the translation to be to the right so it had to 

be a minus 

� 

! x 2 .  He explained this algebraically.  He did not point to the length in 

the small upper triangle (see Figure 3.5d) that equaled 

� 

! ! x " ! x 2 .  For him to think 

about this translation algebraically, he had to have the equation solved for 

� 

! ! y  i.e. 

written as a function.   

He next wrote: 

� 

! ! y = ± b
2

"
b2 ! ! x " ! x 2( )

2

a2
 

D:  These are two different 

� 

x 's ? 

T:  Yeah I want to find 

� 

! x  in terms of 

� 

! ! x , that's what I'm trying to think of..... of 

course it would be different for every 

� 

! ! x , ! ! y ( )  ... Let's see, how would that work? 

D:  Which one are you trying to find from which? 
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T:  I want to find 

� 

! x  = so and so, and so and so 

� 

! ! x  (writes: 

� 

! x =  
............. 

! ! x ) 

D:  So you want to compute 

� 

! x  as a function of 

� 

! ! x  ? 

T:  Yeah. 

D:  Which variables do you want in your equation at the end? 

T:  I just want 

� 

! ! y , which is this one, 

� 

! ! x ,  which is that, 

� 

b  and 

� 

a .  That's it.  Then I 

can see if it's an ellipse. 

 (The interview had now lasted 50 min.) 

 Tom looked back at his notes (Figure 3.5a), and at his figure on the 

Plexiglas, Figure 3.5d.  He thought for a minute and then began writing down 

trigonometric statements using the triangles Figure 3.5d.  Each time that he wrote 

down a statement, I asked him which triangle he was looking at.  Recall that here 

Tom refers to the distance from the hinge to the pen as "

� 

a"  and the distance from 

the pen to the moving pin as "

� 

b" and the length of the arms as "

� 

l"  (hence: 

� 

l = a+b).  

Tom wrote: 

  

  

� 

! x 

2
=  l cos"     (from the triangle with the arm as hypotenuse) 

 

  

� 

! x "
! x 

2

a
= cos#  (from the small upper triangle) 

 

  

� 

! y  =  l sin"  (from the triangle with the arm as hypotenuse) 

 

  

� 

sin! =  
" " y 

b
   (from the small lower triangle) 

 

 Tom next began working with the last two statements and got 

� 

! y  as a 

function of 

� 

! ! y , but then realized that that was not what he was looking for.  He 
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next worked with first two statements by getting two expressions for 

� 

cos! , and 

then setting them equal to each other.  Again one sees Tom using his previous 

approach.  He never mentioned similarity; instead using trig. functions to code 

ratios, and then eliminating them by substitution.  He wrote down as many 

algebraic statements as he could, and then abandoned the figure and began 

experimenting with various algebraic substitutions and simplifications.  His 

algebraic manipulations were rapid, and he seemed to enjoy this.  He had finished 

substituting the last two equations with the 

� 

y 's before he ever thought about what 

it was that he was looking for.      

 In order to relate 

� 

! x  and 

� 

! ! x ,  Tom wrote: 

 

 

� 

! x "
! x 

2

a
=  

! x 

2 # l
 (both equal to 

� 

cos! ) 

 

 

� 

2 ! ! x " ! x 

2a
=  

! x 

2 # l
 

 

 

� 

2 ! ! x " l # ! x " l = ! x " a  

 

 

� 

2 ! ! x " l = ! x "( l + a)  

 

 

� 

! x =
2 ! ! x " l

(l + a)
 

 

T:  (Looking at the curve's equation into which he intends to substitute this) But 

really I'm looking for 

� 

! x 2 , so I can just get rid of that 2.  

Tom writes: 

� 

! x 

2
=

! ! x " l

(l + a)
 

 T:  And so my finalized equation is...... 
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 At this point Tom was writing so fast that I could hardly follow him .  I 

stopped him for moment to get him to say what he was doing, but he was anxious 

to make the substitution and see the curve's equation.  He proceeded to make the 

substitution and write: 

� 

! ! y = ± b
2 "

b
2 ! ! x "

! ! x # l
1 + a

$ 

% 

& 

' 

2

a2
  

T:  So I'm going to try to rearrange that in this form right here (indicates the 

standard elliptic equation). 

D:  To see if it looks like an ellipse? 

T:  Yeah.37 

 Tom's first attempt at rewriting his new equation led him to a fourth degree 

equation.  He then concluded that the curve was not an ellipse.  He worked so 

quickly, that I could not follow what he had done.  I asked him to review what he 

had done step by step, and long before I saw what was going on, Tom spotted a 

mistake in his derivation.  He had read the minus sign after 

� 

! ! x  in 

� 

 b
2 ! ! x "

! ! x # l
l + a

$ 

% 

& 

' 

2

 

as multiplication.  He quickly erased what he had written before I could even look 

at it, and began again.  This time he decided to replace the 

� 

l's in his equation with 

� 

(a + b) 's since they were equivalent.  He also decided to drop the prime notation 

since all occurrences of 

� 

x  and 

� 

y  in the equation were now double primes.  After 

some work he wrote: 

 

                                                 
37  At this point Tom eagerly dove into another round of algebraic manipulations.  Several times 
during the interview I had asked him to write on paper so that I could save his work, but he much 
preferred to write on the large Plexiglas sheet with the dry-erase pens.  He wrote large and kept 
the rag handy for easy erasures.  In the next set of interviews, Jim also loved writing on the 
Plexiglas.  I was reminded of an historical description of how L. Euler worked with his students 
on a large slate table using chalk.  Tom did not always write sequentially.  He loved to jump 
around checking, comparing, substituting and rearranging terms in his equations.  Having 
everything spread out on the table seemed to help him. 
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� 

 
y

2

b2
+
x(2a + b) ! x(a + b)( )

2

a2 2a + b( ) 2
= 1 

 

T:  That's it. 

D:  Does that tell us whether it's an ellipse or not? 

 Tom began scrutinizing his equation in this form and his opinion began 

shifting back and forth as to what it meant.  He saw that it was of second degree, 

but he thought for a while that it was the equation of an ellipse with its center on 

the 

� 

x -axis, but not at the origin.  He was seeing the subtraction in the numerator of 

the fraction involving 

� 

x  as some sort of horizontal translation.  I asked him when 

he drew the curves where did the center appear to be?  He told me that the center 

seemed to always be at the origin.  He became perplexed.  I asked him to 

remember what he had said in the beginning about the lengths of the axes of the 

curve in terms of how the device was set up.  After looking at the device he 

decided that the axes, when expressed in terms of 

� 

a  and 

� 

b , were always of length 

� 

b  on the 

� 

y -axis and 

� 

2a +b  on the 

� 

x -axis.  He then went back to work on his 

equation and simplified it further and wrote: 

  

 

� 

y
2

b2
+

x
2

(2a + b)2
=1  

 

I was very surprised at his next comment. 

T:  I don't think that's an ellipse. 

D:  Oh......you don't think that's an ellipse? 

T:  Cause an ellipse would not have this 

� 

b  here (points at the 

� 

b  under the 

� 

x  term) 

D:  Hmmm......So you think that that tells us that we have the equation of some 

different curve? 



    

David Dennis Curve Drawing Devices http://www.quadrivium.info  
 

248 

T:  I think so..... I'm not sure....... well it might just be that a would be bigger than 

� 

b ,  

by ahhh....... 

� 

b ...... 

 I once again pointed back to the device and asked him how his equation 

related to it.  He looked again at how the device crossed the axes. 

T:   So it's like..... a restricted ellipse...... it's like an ellipse that can only be certain 

values....maybe............No.....it's an ellipse (smiles broadly). 

D:  It is an ellipse?........ You're changing your mind? 

T:  Yeah. 

D:  Why is it an ellipse? 

T:  Well..... I was confused because there was a 

� 

2a +b  under the same term.... I 

wasn't sure if that was.... ahh..... good enough....... but now I see how that's just 

another quantity.... so...............You could do the same thing that we did with the 

� 

f ! l  and 

� 

(1! f ) " l , and with the 

� 

a  and 

� 

b . 

D: OK 

T:  And so this looks elliptical to me, and I could draw any ellipse with it.   

(The interview had now lasted 1 hr. and 15 min.) 

 At this point Tom was completely convinced that the folding arm device 

with equal length arms was a general elliptic device.  The constants 

� 

a  and 

� 

b  were 

not playing the same roles as in the standard equation that he was used to seeing, 

but he did see how they could be adjusted in this new situation to obtain any 

lengths as major and minor axes.   

 What comes out in Tom's last few doubts about this device is the dominance 

in his thinking of algebraic format.  If he could not see the new equation in exactly 

the same form as his previous elliptic equations then he was quite ready to reject 

its being an ellipse without reference to a geometric representation or to his 

physical experience.  With the exception of his thoughts about comparing 

degenerate conic sections to the extreme cases in the folding arm device, his 
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doubts and beliefs were based on algebra with which he was quite comfortable.  I 

think it was especially telling when he looked at the equation: 

� 

 
y

2

b2
+
x(2a + b) ! x(a + b)( )

2

a2 2a + b( ) 2
= 1, and thought that it must be a translated ellipse with 

a center on the 

� 

x -axis away from the origin.  He seemed quite ready to believe this 

based on a hasty inspection of the general form of the equation, even though it 

contradicted all of his physical experience with the device.  I had to specifically ask 

him to look at the device and the curve again.  He then saw that the pivot point 

was always the center, and that he was always using this point as the origin of his 

coordinate system.  This spurred him to reconsider the form of his equation, but I 

do not believe that he would readily have gone back and forth between 

representations on his own.  This was certainly not his habit. 

 This situation illustrates one of the main points of this thesis; that we must 

create situations were different mathematical representations are used to generate 

knowledge cyclically.  Tom was not used to dealing with a situation where moving 

geometry generates algebra.  His natural inclinations were to see the algebra as 

controlling the shape of graphs.  His graphing calculator worked entirely from this 

epistemic view.  By having the physical tools right in front him, once he was 

reminded to look at them, he could see that he had to reconsider his algebraic 

form.  By directing Tom's attentions to the physical actions of the tools themselves, 

he had to look at knowledge flowing in a different direction. 

 Even though this was not his usual habit of thought and action, Tom was not 

frustrated or alienated by this situation.  Quite the contrary, Tom found this new 

situation challenging and interesting.  He came back (without pay) after the interviews 

were over, to talk to me about other curve drawing  devices, their history, and their 

computer simulations.  He said that he thought there should be more "engineering type 

stuff" in high school mathematics.  Towards the end of the first interview when it had 
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lasted nearly two hours, it was late in the day, and I was tired and had to go home for 

dinner; I asked Tom, "So, are you about burned out for the day?"  He answered in his 

usual quiet monotone, "I'm still having fun."  
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3.6  Jim's First Interview 

 As with Tom, I began the interview by showing Jim the adjustable loop of string, 

the two tacks, and the paper covered board, and demonstrating the action without 

actually drawing a curve. 

D:  Have you ever seen this device before? 

J:  Something similar, we've sort of covered ellipses in class. 

D:  So you already have a name for what this draws (Jim nods).  Would you like to try 

drawing with this just to see? 

J:  Sure, I'm expecting an ellipse at least.  (Jim draws one complete curve.) 

D:  Did you get what you expected? 

J:  Looks like it, yeah. 

D:  That looks like an ellipse to you? 

J:  Umm hmm,  of course as these (the tacks) become further and further apart it's going 

to become more and more eccentric; closer this way (gestures vertically along minor 

axis) and wider out this way (gestures horizontally along the major axis).  

D:  OK, would you like to try it one more time? 

J:  Sure. 

D:  Go ahead, move it any way you want. 

J:  (Leaves one tack alone and moves the other one further away.  Draws a new curve 

using the same size loop of string.)  That's the basic idea. 

D:  You say that you moved the tacks further apart and it became more eccentric? 

J:  I think so, yeah. 

D:  Is that what you expected? 

J:  Yeah. 

D:  What does "eccentric" mean to you?  
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J:  Well..... further away from a circle.  I mean if you just had one tack here, say right in 

the middle (Remove both tacks and places one in the middle and places the loop over 

the one tack)  I would expect, I think most people would,.... just to draw the simple 

circle.  (Draws a circle)  That's what it looks like to me.  As... with two tacks, of course I 

could have used two right next to each other and it would have still looked like a circle 

even though it wouldn't have been probably because there's still a slight distance 

between them ......  what we call focal points in our class (indicates a large loop of about 

20 in. over two tacks about 1 in. apart). 

D:  OK, call them whatever you feel comfortable with.  So if they were close together  

you say it would still look like a circle but might not actually be one? 

J:  Yeah, that would be my guess. 

D:  So "eccentric" to you is something that's farther away from a circle? 

J:  Yeah,  I hope that's not too far from the real meaning but that's what it means to me. 

D:  Is eccentricity just a word or is it associated with anything else?  Are there any other 

thoughts you have about what eccentricity is? 

J:  Well, from the definition of the word, when you say someone is eccentric, they're a 

bit off.... away from the norm, which sort of makes sense cause if something is eccentric 

(gestures towards ellipse), it's further away from a circle, which might be a norm 

because its relatively stable.  But as far as this thing goes, there's a definition that my 

teacher gave us, and I'm accustomed to using it. 

D:  Do you remember what that definition is? 

J:  We had a certain point scale.   As eccentricity increased, an object went from a point, 

to a circle, to an ellipse, to a hyperbola at, I think, eccentricity one. 

 Jim described a computer animation of conic sections that he seen and how he 

remembered the numeric scale of eccentricity in terms of the visual pictures he had 

seen, where one focal point went to infinity, and the remaining visible piece of an 

ellipse resembled a parabola. 
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D:  So eccentricity can be a number? 

J:  Yeah  

D:  Is there any way that you could estimate or compute the eccentricity of one the 

curves that you've drawn here? 

J:  Probably, yeah if I assigned... (begins putting in the tacks to draw a new curve).... I'm 

a terrible student, I don't remember the actual number system, but what we did was 

ahh..... it was a basic relation between this length here, and this length here, and this 

length here (indicates the sides of a right triangle formed by  the loop of string with its 

right angle at one of the tacks). 

 Jim used the loop of string to create a right triangle with the right angle at one of 

the tacks, and said that he would use that tack as the origin of a coordinate system for 

an equation of the curve, letting the other tack be on the 

� 

x -axis. 

J:  I like to keep things as simple as possible and right triangles are relatively simple.  

You can use the Pythagorean theorem. 

 Jim studied the motion of the string carefully along the curve and began 

describing how the distance between the two tacks caused the point on the curve to be 

pulled in towards "the absolute center" as the point traveled away from the end of the 

major axis.  I asked him what he meant by the center and he then decided to mark the 

midpoint between the two tacks and told me that it was the center because the curve 

was "symmetrical through that point."  Jim then showed me how the distance from the 

center varied from the end of the major axis to the point where the string formed a right 

triangle at one tack (not the end of the minor axis).  He told me that eccentricity had 

something to do with the difference in the distances from the center of these two points 

on the curve. 

J:  As an object becomes more eccentric there's going to be a greater difference between 

these two lines (the segments from the curve points to the center). 
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 Jim began trying to tell me about the eccentricity of ellipses as compared with 

hyperbolas.  I asked him if he thought this device could draw hyperbolas, and he began 

experimenting.  He began pulling at the loop while he traced a curve.  He said that he 

thought maybe he could do it if he could used a third tack.  I asked him for the time 

being to stick with only two tacks and a fixed loop of string. 

J:  I don't really see how you could draw a hyperbola from this arrangement.  Maybe 

you can.....  I'm just probably not looking......  I don't see it. 

 (The interview had now lasted 11 min.) 

 I next asked Jim if he knew any way to find an equation of these curves from the 

action of the loop of string device. 

J:  Well we were supposed to know this... ahhh...... 

D:  What might you try? 

 Jim explained how he would first measure the distance between the two tacks, 

and then measure the loop of string which he looked at when it lay in two equal pieces 

along the line of the two tacks.  He then repositioned the loop at another point on the 

curve, and said of the length of the loop that it was "of course the perimeter of this 

triangle." 

J:  Then at any point, of course, the perimeter is going to be fixed.  Soooo.... oh how 

would I do this?.......(long pause as Jim examines the action of the device along a quarter 

of the curve)..... As far as writing a direct equation, I'm drawing a blank here, but I 

would definitely look at these two lengths here (again places the loop so that it 

collapses onto the line through the two tacks, and indicates half the loop length and the 

distance between the two tacks). 

D:  Would those two measurements be enough to determine an equation or would you 

need more information?  

J:  It seems to me that that should be enough, because all that we're using are these two 

things. 
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 Jim explained with many gestures and motions of the device along the curve 

how those two measurements were enough to completely determine the curve. 

J:  By varying these two distances we can vary the shape of these drawings, so as far as 

writing an equation, I would think that these two distances would be the only pertinent 

information, because certainly the angles aren't fixed as we slide it around the angles 

are changing (demonstrates). 

 Jim played with the device some more considering various positions but had no 

idea how to translate his observations into an equation.  

D:  You don't have to do it right now, but you think that you could do it maybe?   

J:  Yeah, if I thought about it, probably, yeah.  

D:  You're pretty convinced that that would be enough to get an equation? 

J:   I hope so!   Because that's all I see right now.... yeah, I'm pretty certain, because it 

seems those are the only two things that are interacting on this system right now 

(indicates the two distances, although he seems to have switched from the entire string 

length to half of it as seen in the collapsed position). 

D:  Well let me show you something different.  This is another device that draws a 

curve. 

 I pointed towards the trammel and the grooved Plexiglas.  Before I had even 

moved the trammel in the tracks, Jim said: 

J:  Oh yeah, I have one of these.  It slides along the track right. 

 Jim described a desktop toy that he had been given known as a "B.S. grinder" 

which moved in the same way as the trammel with a crank attached to a point on the 

trammel extended beyond the two pins in the tracks.  His toy could not be adjusted, 

and moved in only one curve.  I explained how to use the pens and adjust the pins and 

the pen holders (one between the pins and one outside them).  Jim was anxious to get 

his hands on the device and draw some curves. 
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D:  Before you draw anything, what do you think that pen's going to draw?  Do you 

have any guesses? 

J:  Well in the outer one my guess is that it would be an ellipse right away.  I'm 

relatively sure of that because that's what the one at home looks like.  It looks like it 

draws an ellipse....... Now looking at the inner one (the pen holder between the two 

pins).... I like to try to picture things..... ummm.... if you..... I'm just trying think what 

would happen.  Now when I look at this, I think about when one of these points is 

going to be relatively fixed over here say... 

 Without having moved the device Jim then gave a very detailed description of 

what he thought would happen when either one of the pins was near the intersection of 

the two tracks.  He explained how when the pin in the vertical track was near the 

junction, that both that pen and the other pin experienced almost no horizontal motion 

and vies versa.  He seemed anxious to demonstrate what he meant, and so I told him to 

go ahead and draw a curve.  With the pen between the pins, closer to the one in the 

horizontal track, and the pins about 15 in. apart, Jim drew a curve and explained his 

idea.   

 He then added the observation that when the vertical pin is near the junction, the 

pen is moving vertically "at a fraction" of the pin's motion.  His sense of a geometrically 

determined proportion seemed very astute. 

J:  Say it's moving about an inch in either direction here (vertical pin near junction), this 

(the horizontal pin) is actually moving in and out a very very small amount, so the pen 

doesn't move forward and backward very much at all, while it moves up and down..... 

oh........ what is this? (indicates motion of vertical pin) say I have about two inches 

here..... It (the pen) is moving at a fraction of that distance here (gestures to indicate a 

shrinking proportion of vertical motion along the line of the trammel). 

 Jim also observed that when one of the pins was near the junction the motion of 

the pen was "essentially a line," either horizontal or vertical depending on which pin 
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was near the junction.  He expressed these ideas quite clearly using both hands to 

gesture about relative rates of motion and making "V" gestures with both hands to 

indicate the proportionality between the motion of the pen and a pin in the track. 

 Jim next wanted to verify his guess that when the pen was outside of the two 

pins that he would get a ellipse.  He wanted to make sure that the trammel device 

worked in the same way as his toy, the "B.S. grinder."  He drew a curve using the 

outside pen holder, and was satisfied that his guess was confirmed. 

D:  Were you surprised at all by the curve that you got with the pen on the inside? 

J:  A little bit.  I thought it was going to draw a shape more like.....uhhh....  (begins to 

sketch on paper)..... I sort of expected..... or I was hoping that it would do something 

like this (see Figure 3.6a).  I'm trying to think now if it's possible to get it to do 

something like that. 
 

       
          Figure 3.6a 
 

D:  Why did you think that?  could you explain? 

J:  Well just immediately looking at this, I was trying to think what would happen when 

uhhh....... well you see I hadn't seen the relation that this had with that (begins moving 

the trammel and pointing to the motion of the inside pen with respect to the pins).  I 

was imagining.....I just didn't think....but of course this has to stay in that same position, 
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but I was imagining that it would come down somehow (indicates a possible cusp as in 

Figure 3.6a)... I  don't know but I was hoping somehow that it would look like that.  It's 

obvious now that it's not going to do that. 

 Jim explained that he now thought the trammel would draw elliptic shapes in 

almost any position.  This is an excellent example of the powerful and immediate 

impact that physical tools can have on one's conceptions as well as a classic example of 

Piaget's notion of assimilation and accommodation.  Jim's vision of the vertical motion 

of the pen when crossing the horizontal track and its horizontal motion when crossing 

the vertical track led to envision a cusp in the middle where the motion changed.  While 

essentially correct, Jim's theory had to assimilate the experience of the inner pen holder 

having drawn an ellipse.  This led him to a new theory which accommodates this 

experience.    

D:  Is there any other different shape that you think you could get by putting these (pins 

and pen holders) in different positions? 

J:  Well I would expect that I could get a circle if I were to...... bring these (the pins) very 

close together..... or get something that looks sort of like a circle. 

 Jim then placed the pins as close together as possible (about 2 in.) and put the 

outside pen holder near the other end of the trammel (about 18 in. away).  He began to 

trace the motion of outside pen holder. 

J:  As it (the pen holder) gets further and further out it's going to look less and less like 

an ellipse, and more and more like a circle (draws large curve and stands up to get an 

overview)....... It does look a great deal more circular, although it does look a little bit 

longer in this direction than it is in this direction, which is what I'd expected. 

D:  So if we could put these (pins) closer together and the pen further out there.... that's 

a way to get something closer to a circle? 

J:  Yeah, yeah, sure it would look more circular...... I wonder if it would be more 

circular?  It certainly would look more circular. 
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 Jim pondered this point and decided to draw some curves by just changing the 

position of the outside pen holder and keeping the pins as close together as the device 

would allow.   

J:  What I wanted to see was..... I wonder if  this is any more circular than this is or if it's 

just the way we see it (compares large and small "circular" curves by measuring the 

distance between the curves on the horizontal and on the vertical finding them to be the 

same).  What I was wondering was... if this is just simply a blown-up version of this, or 

if we somehow changed..... the uhhh equation of this.  I wonder if these equations are 

same, or if it's just the way we see it.  For example if you were to stand two stories up.... 

if this (large curve) would look the same as this (small curve). 

 Jim thought about this question and decided that just measuring the distance 

between the curves was not enough to establish whether one was a "blow-up" of the 

other.  He then measured out from the center to both curves on the vertical and again 

on the horizontal.  He got out his calculator and then computed the ratios of these pairs 

of numbers.  He got the ratio of vertical distance out to the curves as: 

� 

15.5 in.

4.25 in.
=  3.64 , 

and the ratio of horizontal distances as: 

� 

17.75 in.

6.25 in.
= 2.84 .  He then concluded that these 

two ratios were not equal, and so the large curve was not "blow-up" of the smaller one.  

I asked him which curve was more circular, and he said that the larger one "looked 

more circular", and that he "wanted to have some way of supporting that observation."  

J:  I hope that using a ratio like that is the right way of doing that. 

D:  Is there any other way to get something more circular with this device? 

J:  I think we've tried all the different possibilities. 

 (The interview had now lasted 36 min.) 

 Jim expressed here a very clear conception of geometric similarity here, although 

he did not use the word "similar."  Later when looking at triangles Jim used the word 

"similar" with precision and comfort.  He was very interested in the similarity of these 
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conics, but it seems the word "similar" is used in math classes only for rectilinear 

figures, and so Jim's use of the word was restricted, despite his clear conception.  

Apollonius wrote a whole series of propositions for determining when conic sections 

are similar, and I think Jim would have been fascinated by such ideas.  In my teaching I 

have found that most secondary and college students have no idea what is meant by 

statements like "all parabolas are similar to each other."  As his use of ratios 

demonstrates, Jim was thinking very clearly about the concept but had never 

experienced in mathematics a more general use of the word "similar." 

 Since Jim had said that the curves drawn by the trammel "looked like ellipses," I 

next asked him whether he thought he could duplicate curves drawn by one device 

with the other. 

J:  Probably...... well given this thing's limitations (trammel).... You can only get the pins 

about that far apart (2 in.).....  You can draw something closer to a perfect circle with 

that (loop of string) because you can get those (tacks) very close together.... but if this 

were able to slide in further I think that they would draw essentially the same things.... 

given any combination (indicates adjustments in the devices). 

 I next asked Jim to try to duplicate with the trammel any specific curve drawn 

with the loop of string.  Jim began studying the motion of the trammel in different 

positions.  Jim  decided to use specific even numbers of inches.  He used a 26 in. loop of 

string over two tacks 6 in. apart.  He thought of this as an ellipse based on a 6 in. tack 

distance and what he called an "

� 

L" of 13 in.  He was measuring the distance from the 

far tack (focus) to the end of the major axis or half the total loop of string.  Because of 

his thoughts about circles, he  equated the tack distance with the distance between the 

pins on the trammel; and so he began by setting the pins 6 in. apart.  He then set the 

outside pen holder 13 in. from the far pin to match the set up of the string device.  He 

then drew the curve.   
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 Just by looking at the curves he decided that they were not the same.    He then 

noticed that the trammel was drawing a curve with 13 inches between the center and 

the end of one axis, while the loop was drawing a curve with 13 inches between a focus 

and the end of the major axis.  He then decided that he had to measured from the center 

(halfway between the tacks) which gave him 10 inches.  He then reset the  pen holder 

on the trammel at 10 in. from the far pin leaving the pins 6 in. apart.  Just by looking at 

the motion of the newly adjusted trammel, he saw that it was still not going to draw the 

same curve, because it's minor axis was much smaller than the curve drawn by the loop 

of string.  Jim did not measure the minor axes with the ruler but simply used his eyes.  

The semi-minor axis of the curve drawn by the loop of string was about 9.5 in. while the 

trammel curve's semi-minor axis was 4 in.  Using the outside pen, Jim was still 

conceptually committed to matching the tack (focal) distance with the pin distance on 

the trammel, and so he next abandoned using the outside pen, without considering a 

readjustment of the pin distance, which could have achieved the stretch he said he 

needed (see below). 

D:  Did anything improve?  Did it  get any closer to that curve? 

J:  We got closer because the distance from this center (intersection of the tracks) to here 

(end of curve's major axis) should be the same, because I measured 10 inches...... but I 

basically need to stretch.... if I could grab a hold of it and stretch it out in this direction 

(indicates widening the minor axis of the trammel drawing)....... Well it looks like it's 

not going to happen using this outside one (pen holder) so....  I'll abandon the outside 

one, and use the inside one (pen holder between the pins)........ Now rather than going 

with something completely arbitrary I'll try ten (sets the pins 10 in. apart)..... and the six 

from here to here (sets the inside pen holder 6 in. from the fixed pin and draws a new 

curve).  I don't know if I got closer.  Obviously it's going to be a lot smaller, so..... but it 

least it less stretched out this way (gestures that his new curve is rounder than the one 

previously drawn with the trammel—new curve has half axes of 6 in. and 4 in.). 
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 Jim explained that he now had a curve which appeared to his eye to be roughly 

the same shape as the one drawn by the loop of string, but smaller.  They both appeared 

to him as "smooth and round."  He then thought about how to increase the size of the 

one drawn by trammel. 

D:  What might you do? 

J:  Well I was thinking of just.... uhhh.... basically..... dilating from this point here (points 

to fixed pin in the end of the trammel) both these things outward (indicates pen holder 

and adjustable pin moving farther out the trammel).   

 I asked Jim what he meant by the word "dilating," and he explained by giving an 

example where all the distances on the trammel were doubled.  He said that doubling 

was an "easy thing to dilate by," and that it looked like it would get him closer what he 

wanted to get the trammel to draw.  He then set the pins 20 in. apart and the pen holder 

12 in. from the fixed pin.  He drew a new curve and decided just by eye that it was not 

the same curve (half axes of 8 in. and 12 in.).  Jim then took the ruler and the trammel 

and began considering new possible settings for the pin and the inside pen holder.  Jim 

began trying to use the numbers 6, 10, or 13 inches in some way to set up the trammel, 

because those were the distances that seemed to important when setting up the loop of 

string device.  He considered that maybe instead of dilating he should use a "square 

function," which he described as doubling one distance while quadrupling another.  He 

believed that the loop of string involved the Pythagorean theorem, which involves 

squares so this might make some sense. 

J:  You see I was trying to use numbers to be sure that I was getting close to the right 

thing.   ..........  It might make sense to try something with squares but before I do 

that.......ummm....  I guess I'm overlooking the obvious, I can get......... I mean before, I 

did make something that sort of looked sort of like a circle.  It was a much less eccentric 

looking object, simply by getting the two focal points real close together (Jim is talking 

about the pins on the trammel and is calling them "focal points").  So maybe by doing 
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the same thing I can get something close.  (Jim returns to considering the outside pen 

holder of the trammel with the two pins close together).  I didn't really give this a 

chance. 

 Jim played with this idea by eye, and drew a curve that was fairly close.  He told 

me that he thought by doing this he could get "something that was a blow-up of that 

one"  but that he could never get it exactly because the pins on the trammel could not be 

moved close enough together "to get the same scale."  He was indeed correct in this 

observation since the closest setting of the pins was 2 in. and in order to reproduce his 

curves he would need to have the pins 1.5 in apart.  Jim did not, however, express this 

limitation quantitatively. 

 Jim decided to start again, and he erased the Plexiglas and decided to draw a 

new ellipse with loop of string as well.  He left the tacks 6 in. apart but shortened the 

loop of string to 24 in. or what he called an "

� 

L" of 12 in.  He wanted to have "

� 

L" equal 

to twice the distance between the tacks.  He thought that might help him to see how to 

reproduce the curve.  He then decided to try placing the pins 12 in. apart, and the inside 

pen holder 6 in. from the fixed pin to match the lengths that he saw on the loop of 

string.  He then placed the trammel on the tracks, and before he started drawing the 

curve he said: 

J:  This is going to be six out there and six out there.....  Oh!...  This is obviously going to 

be like a circle.  I should have seen this before (draws the curve and gets what he 

expects). 

 (The interview had now lasted for 1 hr. and 3 min.) 

 Jim then explained how the distances of the pins from the pen holder determined 

where the curve would cross the horizontal and vertical tracks which he now called the 

� 

x  and 

� 

y  axes.  In this case those two distances were both equal, and he said that was "a 

characteristic of a circle." 
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J:  This is pretty much as close as we're going to get to a perfect circle.  That's my 

prediction. 

D:  Do you think that this is a perfect circle?  Or as close as you can get with device? 

J:  Theoretically, yeah it probably is a perfect circle, because this distance here and this 

distance here (indicates the half axes) are supposed to be exactly the same......  It looks 

circular to me. 

 I told Jim that I could see that the curve crossed the axes at equal distances, but I 

asked him why the curve remained equidistant from the center at the points in 

between.  He studied how the trammel moved through one quarter of the curve, and 

then went back to describing qualitatively the relative rates of horizontal and vertical 

motion as they varied between the axis crossing points, just as he had in the beginning 

of the interview.  He said that these rates behaved just like the sine and cosine function, 

and that that was evidence for why the curve was circular.  He said that at 45˚ the rate 

at which the vertical was increasing was equal to the rate at which the horizontal was 

decreasing.  He could not be more specific.  He summed it up by saying: 

J:  The whole reason I think it's a circle is that it's behaving like I would expect a circle to 

behave. 

 I tried to get Jim to be more specific, and he studied the trammel device some 

more, and then said that the whole device depended on looking at a series of right 

triangles that all had the same constant hypotenuse, i.e. the trammel.  In this case the 

pins were 12 in. apart, and so he said he was looking at the Pythagorean relation 

� 

A
2

+ B
2

=C
2 , where 

� 

C  remained constant at 12 in. and 

� 

A  and 

� 

B were the distances of 

the pins from the center.  He then tried to think about the relative rates of change of 

� 

A  

and 

� 

B, because they would be would be related to the 

� 

x  and 

� 

y  coordinates of the pen 

moving on the trammel.  He thought it might have something to do with the graphs of 

the curves 

� 

y =1 x  and 

� 

y =1 x
2 .  He got out his graphing calculator and looked at the 

graphs of these curves and decided these would not help him. 
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 (The interview had now lasted 1 hr. and 15 min.) 

 Jim next calculated some values for 

� 

A  and 

� 

B using his Pythagorean relation.  He 

showed me that as 

� 

B increased from 10 in. to 11 in. , A would decrease from about 7 in. 

to about 5 in.; or roughly twice as much change as 

� 

B since 

� 

B was nearing the top at 12 

in.  I said that that was a good demonstration of his idea about the relative rates, but 

that in order to convince me that this trammel setting was really drawing a circle he 

would have to show me that the pen holder stayed 6 in. from the center at all points 

along the curve.  Jim looked a little flustered, and then simply got the ruler and laid it 

on the curve and showed me empirically that all points were 6 in. from the center.  Jim 

had a triumphant smile on his face, and I felt foolish and pedantic.  

D:  OK, you got me on that one. 

 I then asked him to return to the task of copying the curve drawn by the loop of 

string with the trammel.  Jim first tried just moving the pen slightly off center leaving 

the pins 12 in. apart.  He thought this was close in shape but smaller than the other 

curve.  He played with the device some more, and he eventually saw that the distances 

of the pen from the pins would have to match the half axes on the other curve.  He 

could see that the semi-major axis of the loop-drawn curve was 

� 

12 ! 3 = 9 in.  He then 

looked for the length of the semi-minor axis on the loop drawn curve.  As in the 

beginning, Jim pulled the string, so that if made a right triangle with the right angle at 

one of the tacks (instead of an isosceles one).  See the dotted triangle in Figure 3.6b.  He 

measured the leg of this triangle towards the curve as an axis getting 8 in. (instead of 8.5 

in. if he had measured out from the center to the apex of the isosceles triangle). 

 He set up the trammel with the pen 9 in. from the fixed pin and then moved the 

other pin 8 in. form the pen.  He drew the curve, and said that it looked about right, but 

that he had "no way of really knowing."  He then looked back at the loop of string, and 

saw that he had measured the minor axis wrong,  and that he should have measured 
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from the center out to the apex of the isosceles triangle.  He remeasured, and found the 

semi-minor axis to be 8.5 in.  He made the adjustment and drew a new curve. 

J:  Looks reasonably close. 

D:  Do you have a system at this point for copying any curve over there (loop) with this 

thing here (trammel). 

J:  I should be able to. 
 

  
     Figure 3.6b 
 

 Jim explained how he would use the midpoint between the tacks as a "center" or 

"origin" and that he would measure the half axes, and then set up the trammel 

accordingly.  I then asked him if he could calculate these distances from the tack 

distance and the length of the loop of string.  He told me that the semi-major axis was 

"

� 

L !
1

2
X " (where 

� 

L=half the loop, and 

� 

X =dist. between the tacks).  Jim then explained 

that by dividing the isosceles triangle formed by the loop when the pen was at the end 

of the minor axis, he would get two equal right triangles each having a hypotenuse of 
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� 

L !
1

2
X , and a leg of 

� 

1

2
X .  See the bold triangle in Figure 3.6b.  Using the Pythagorean 

theorem he could then find the semi-minor axis that he needed to set up the trammel. 

 (The interview had now lasted 1 hr. and 30 min.) 

 I told Jim that we would return to our discussion of these devices in the next 

interview.  For the remainder of the time that we had (about 15 min.) I let Jim 

experiment with the folding arm device with equal arms.  He first drew a curve which 

was very eccentric.  Looking at a piece of this curve, he thought it might be a parabola.  

He then move the pen closer to the hinge and drew another curves which was much 

rounder.  I told him that although the arms of the device collided at some point that he 

could lift them or flip them over to continue the curves.  He then flipped the device 

over and continued his curves on the other side, and decided that they might both be 

ellipses.  He then took the folding arms off the Plexiglas, and began moving them 

slowly in his hands.  He said that the rates of motion in the device were very much 

same as in the trammel device.  I told him that when we returned, I would ask him the 

same sort of questions about this device, and its possible relations to the other two.  I 

also asked him to think about how the action of each of the devices might give rise to 

equations for the curves that they drew.  
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3.7  Jim's Second Interview 

 When Jim returned a week later for his second interview, he began by telling me 

that he had looked over some of his notes on conic sections, and that he had thought 

about what was "important" in the loop on string device.  He put two tacks in the board, 

and said the distance between them was "important."  He then used the loop of string to 

draw an ellipse and chose a point on the curve and labeled it 

� 

(x, y) .  I asked him how he 

was measuring 

� 

x  and 

� 

y .   

J:  Oh... Ok....  yeah......  a coordinate system.....  let's see.....  I think I'll have the center 

be.....  (sketches in the axes of the ellipse)..... You know,... so we're going through here 

with our 

� 

y  and 

� 

x  axes..... and these (the tacks) are on the 

� 

x -axis like that. 

D:  By "center" you mean half way between the tacks? 

J:  Yeah, yeah.... and I'm assuming that that's going to be the center of whatever I'm 

drawing.  It's more or less half way between.  That's what it looks like.  I think it's easier 

that way, because then you have the symmetry to deal with rather than having one tack 

centered on the ahhhh..... origin. 

 Jim explained how he was changing from his original idea of the previous week 

of using one tack as the origin.  He again mentioned that he was motivated by the 

symmetry of the ellipse, so I asked him about that. 

D:  What are the symmetries of the ellipse? 

J:  You've got the definite 

� 

x  and 

� 

y  axis symmetries (indicates his sketch) where you can 

reflect it over either way.... you can flip it over. 

D:  And those are the lines you want to use as axes? 

J:  Yeah.... It's also got point reflection (indicates center),  but that's kind of irrelevant...... 

for right now at least.  So starting out with a point like this (labeled 

� 

(x, y)) I was trying 

to think how you could relate this to..... whatever it was you were drawing..... you 

know, given this, trying to make an equation for it..... And so what I thought about was 
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the distance from the origin to these things here (the tacks) and the distance here (marks 

the distance from the tack out to the end of the major axis, see Figure 3.7a). 
 

     
    Figure 3.7a 
 

 Jim started looking at the 

� 

x -coordinate of his labeled point.  He drew in the 

perpendicular from the point to the major axis.  He looked at the figure, and then 

decided that he wanted to change his previous marked constant to be the "total 

distance" from the center out to the end of the major axis.  He decided to call this "

� 

a" 

and then he labeled the distance from the center to the tacks as "

� 

c ."   He then began to 

label the 

� 

x -coordinate of his point as "

� 

b ." 

D:  Where are 

� 

x  and y in the picture?  Can you show me geometrically? 

Jim showed me where they were, and then got rid of "

� 

b" since he saw that it was "better 

to call that 

� 

x ." 

D:  What do you want to do with this? 

 Jim thought for a while and then consulted his notes.  He said that he "had this 

all thought out before," but that now he had forgotten some of it. 
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J:  I decided last time that the basic governing principle...... the basic things that you 

needed to have.... to say, write an equation for this were the length of the loop.... this 

here (pulls string to lay along the 

� 

x -axis), and the distance between the two focal points 

(indicates tacks).  I was trying to remember how to write an equation using 

� 

x  and y to 

create any.... uhh..... ellipse (gestures along a piece of the curve). 

 I asked Jim about the relationship between the "

� 

a" and "

� 

c "  that he had labeled in 

his picture, and those "two basic things" used to draw the curve  i.e. the loop's length 

and the tack distance.  He gestured to show me that 

� 

c  was half the distance between the 

tacks.  He then put the string back on his general labeled point on the curve, and told 

me that he was "guessing" that the two string lengths that connected that point to the 

tacks "added together would equal 

� 

2a ."  Jim kept moving the string back and forth 

between his labeled point and the end of the major axis where the string triangle 

collapsed onto the 

� 

x -axis.  I asked him to  explain that to me.  He said the reason that he 

thought that it was always equal to 

� 

2a  is that when the string all lay along the 

� 

x -axis he 

imagined grabbing the string at the nearest tack and sliding it along like a conveyer belt 

until the he had moved the that point to the center.  This would amount to a slide of 

length 

� 

c .  When this was done the point on the string that started at the other tack 

would also have moved to the center and the piece of string which was the sum of the 

distances from the tacks to the curve would now go from the center to end of the major 

axis and back again and thus would equal to 

� 

2a .  Jim expressed this physically by 

actually marking the string and demonstrating the sliding motion.  It was both simple 

and convincing and avoided the algebraic subtraction that is usually used to show this 

(i.e. 

� 

(a - c) +(a +c) = 2a ).   

 Jim said that he "didn't need to worry" about the piece of string between the 

tacks (of length 

� 

2c ) because the important part was the two pieces that went out from 

the tacks that always added up to 

� 

2a . 
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J:  Now where am I going with this.... uhhh... (consults notes and then returns the string 

to his labeled point)....  OK, what I trying to do is to get the distance of this one here and 

this one here (indicates the two string lengths between his point and the tacks), and the 

easiest way to do that is to use right triangles.   

 Jim then set up right triangles with these two string lengths as hypotenuses, and 

calculated their distances using the Pythagorean theorem (see Figure 3.7a).  He clearly 

indicated the bases of the these triangles as 

� 

x + c  and 

� 

x ! c , and their heights as 

� 

y  and 

then wrote:  

 

  

� 

(x + c)
2

+ y
2

+ (x ! c)
2

+ y
2

=   2a . 

  

 I invite the reader compare Jim's explanation of this equation with Tom's (Sec. 3.4).  

Although Tom eventually remembered this equation during his first interview, without 

reference to any notes, he explained it as an application of the distance formula and did 

not refer to triangles.  Tom knew from looking at the string that the sum of these two 

distances was constant, but he was not quite sure whether it should equal 

� 

2a  or 

� 

4a .  

Tom said that the choice had to be made so as to make the "algebra come out nicely."  

Jim's sliding string argument was based on his own physical experience with the device 

and expressed a clear geometrical reason for the constant 

� 

2a .  

J:  That (the equation) is a really nasty, but meaningful expression for this creation here, 

whatever we have.....uhhh.... given that.... uhh..... what we said was that..... since the 

string is determining where it (the point on the curve) is going to be, and this (the 

equation) is telling you the lengths of the string.  You're given these points here (tacks).  

It (the equation) relates all of the pertinent information together..... into a nasty equation 

which .... you know.... given higher algebraic skills, I'm sure I could simplify, but I don't 

really want to....  unless you're asking me to......  I know what it is.....  

D:  You've been through it before? 
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 J:  Yeah, it should be..(writes: 

� 

x
2

a2
+

y
2

a2
! c 2

=1 ).  I saw my teacher do it.        

 (The interview had now lasted 18 min.) 

 Jim said that he felt that he might be able to show that the two equations were 

algebraically equivalent, but that his algebra skills were not good, and that he was 

"prone to making mistakes when it comes to following rules."  I told Jim that his 

explanation of the first equation "made perfect sense to me," and that we would just 

assume for now that the two equations were equivalent without going through the 

derivation.  He said that that "pretty much nailed down" the loop of string device, and 

so he turned his attention to the trammel device. 

J:  Since these two are equivalent devices, as far of being able to draw the same 

objects...... 

D:  You think they are? 

J:  I think these are equivalent devices.  Experimentally we've been able to draw the 

same things.....  and..... given a distance here (loop) I can sort of relate..... and get a 

similar looking object over here on this thing (trammel). 

 Jim then reviewed his method from the previous interview for copying the 

curves from the loop of string device with the trammel device.  He now chose to call the 

semi-minor axis "

� 

d" and showed me, by looking at an isosceles triangle formed by the 

loop of string,  that 

� 

d
2 

+c
2

= a
2 (from half of the isosceles triangle in Figure 3.7a).  He 

then showed me that using 

� 

a  and 

� 

d , he could set up the trammel to copy a curve.  As 

an example, he copied his string drawn ellipse with the trammel. 

 I next asked him if he could go the other way, and copy with the loop of string, a 

curve first drawn by the trammel.  Jim was instantly sure that he could, and set about 

showing me.  He changed the trammel setting arbitrarily and drew a new curve with 

the pen between the pins.  He took the trammel and used it like a compass to mark off 
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the semi-major axis, 

� 

a , on the string board from a center.  Jim then thought about where 

to place the tacks. 

J:  Well I could work backwards (he marked the half axes on the trammel curve as 

� 

a  

and 

� 

d).  (long pause as Jim studies his figures, and marks the length d from the 

trammel onto the board).  Well I could just do it by trial and error but I'd rather not.......  

I know that it's got to max-out up at this point here (indicates top of minor axis).....  So 

since these are going to be an equal distance out (tacks from center)...... hmmm 

D:  So what's the piece of information that you need here? 

J:  I need to know 

� 

c . 

D:  OK, you know 

� 

a  and you know 

� 

d , and you've got to find 

� 

c ? 

J:  ummmmmm. 

 Jim then measured 

� 

a  and 

� 

d  precisely in inches from his trammel curve as 

� 

a = 8.25 in. and 

� 

d = 3.25 in. He then took his calculator and began figuring. 

D:  What are you doing? 

J:  I'm using this equation right here to find 

� 

c  (indicates: 

� 

d
2 

+c
2

= a
2 )....... I got an 

answer of 7.58 in. 

 Jim then used the ruler to position the two tacks on a horizontal line each 7.58 in. 

from a marked center.  He then adjusted the size of the loop of string, so that when it 

was placed over the tacks it reached out to a point on the horizontal axis 8.25 in. from 

the center.  The string loop then went less than an inch past the tacks on the 

� 

x -axis.  

This looked a little tight to Jim. 

J:  I don't know if it's going to make it.  We'll find out..... But....  I mean it's close 

(examines the loops action with his finger).  I don't know if its a problem with my logic, 

or if it's something with just the mechanical limitations of the measurements and stuff 

like that. 
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D:  Well draw it and see how close it looks.  Give it a try.  (Jim draws the curve with 

some difficulty because of string being so tight on the tacks.)  Does it look reasonably 

close? 

J:  It looks reasonably close, yeah.  I think...... I mean given the inaccuracies of the 

measurements.   Hopefully.... hopefully it's not just a coincidence.  I don't think it is.... 

because unless I'm not seeing something, the logic follows that it would be the same. 

 I told Jim that his logic convinced me that the lengths of the axes on both curves 

would be the same, and that this would guarantee that the four points on the axes 

would match up.  I asked him how he could be sure that the other points along the 

curve were really the same "since the actions that produced the curves were different."  

I pointed out that he had showed me in detail how any point on the loop of string 

device always had the sum of its distances to the tacks equal to 

� 

2a .  I asked Jim if he 

could give any kind of argument; physical, geometric or algebraic; to show that the 

points on the two curves were "really the same or perhaps different."  Jim  began 

readjusting the trammel so that the pen was close to the midpoint between the pins.  

J:  Yeah, I was trying to think about something sort of along the same lines.  You asked 

me last time how I could know that something was a circle (points at trammel).  I drew 

this.... (indicates the first trammel drawn curve); it looks semi circular.   And I was 

trying to think of some argument for that, and I found myself having a difficult time 

(studies the motion of the trammel along a large close-to-circular curve). 

D:  Last time you found a way to draw a circle.  Do you remember what that was? 

J:  Yeah, I just have these two of equal lengths (distances from pen to pins).   (Jim uses 

the ruler to get the two distances the same at 6 in. each.  He then draws a new curve 

which appears circular.)  Now the last time that I was working on this I remember 

trying to talk about the sine and the cosine and the unit circle..... things like that...... 

trying to show the way things were increasing and decreasing at varying rates.  And I 

thought about this for a while, and I couldn't really think of a really conclusive 
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argument to show that it was a circle beyond saying that it's got the same radius here 

and here (indicates where the curve crosses the tracks).  And sort of looking at it and 

saying well it's not doing anything special like moving back and forth so there's sort of 

a fixed ratio between here and here (moves the trammel through on quarter of the 

curve), and so I'm guessing that it's going to be sort of a constant relation along there, 

but ahh.... beyond that I was trying to think of how I could make a good convincing 

argument......  Well when we transferred from here to here (trammel to loop device) we 

said that distance from the first pin to the pen was equivalent to a.  Right? 

D:  unnn hun. 

 (The interview had now lasted 40 min.) 

J:  And over here when we were drawing this thing (with the loop) we said that 

� 

2a  was 

constant throughout.  The length of the string being 

� 

2a  doesn't change (moves loop of 

string to demonstrate).  So if this distance here is "

� 

a" (on trammel), and this distance 

here is 

� 

2a  (length between the pins on the trammel).... I just trying to get some 

corresponding pieces from these two different apparatuses.  Because they're both doing 

the same thing in the end, and they have the same sort of measurements, so I might as 

well call it the same thing.  I going to draw myself a little diagram.   

 Jim  traced a picture of the trammel and labeled the length from one pin to the 

pen as "

� 

a ."  Since he had the trammel set up to draw a circle he then labeled the 

distance from the pen to the other pin also with an "

� 

a ."   I then asked him to review 

again how in general he transferred curves from the trammel to the loop.  He then 

labeled the second distance on the trammel as "

� 

d ," and said that in this special case 

� 

a = d .  My question was somewhat leading for Jim because although in a physical sense 

he had discovered quite clearly how to set up 

� 

a  and 

� 

d  on the trammel, he did not 

always label things consistently. 

J:  Although 

� 

a  and 

� 

d , in this case, are equal, I should call one "

� 

a" and one "

� 

d" for the 

purposes of keeping my mind straight.....  because again maybe.... uhh.... I wouldn't 
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have thought of that.....  Now over here (looks at loop of string)..... I don't know how to 

put all this together.  I'm seeing a lot of different things here.  When you label them 

appropriately things start to correspond.  Obviously when d becomes equal to a over 

here (trammel diagram).... this right triangle (on loop, see Figure 3.7a) goes down to 

nothing.  The two lines (strings) overlap over each other and the two focal points (tacks) 

have to come together to a point, and that's when you get a circle in this case.  Then 

again over here (trammel), when you're getting a circle is when 

� 

a  and 

� 

d  are equal to 

each other. 

 Jim explained in detail how the  right triangle in his loop picture with sides 

� 

a , 

� 

d  

and 

� 

c  would "collapse" if 

� 

a = d  forcing 

� 

c = 0 , which is how he first thought of a circle, 

i.e. as a curve drawn with the loop over one tack.  Jim then took the trammel and left 

"

� 

a" the same and made "

� 

d" larger and drew another curve which touched tangent to his 

circle on the 

� 

x -axis.  He looked unhappy. 

J:  I should have made 

� 

a  longer than 

� 

d  for the purposes of keeping everything the 

same, because now my focal points are on the 

� 

y -axis (points to where he thinks the foci 

would be on the Plexiglas, and then erases the new curve keeping the circle).  What I 

want to do is find 

� 

c  on this somewhere, because if I can do that it will show me where 

the focal points are.....  It's hard to do that with a circle because there is no 

� 

c . 

 Jim readjusted the trammel so that half the vertical axis, 

� 

d , was equal to the 

radius of his circle but half the horizontal axis, 

� 

a , was "a little bit bigger."  He then drew 

a new curve with the trammel that touched tangent to his circle at the two points on the 

� 

y -axis.   

J:  Now I want to find 

� 

c  on this..... and since 

� 

c  is the base of the triangle formed by 

� 

d  

and 

� 

a ...... and since I said that 

� 

a  is this distance here (Jim  lays the trammel on the 

horizontal axis so that half the axis of the curve and the length on the trammel match 

up)...... if I want this like this, then I get the point there... which should be one of the 

focal points (Jim takes the trammel and uses it as a compass to draw an arc of radius a 
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from the top of his curve's minor axis intersecting the horizontal axis at his proposed 

focal points.  He then traces the 

� 

a , 

� 

d , 

� 

c  triangle on both sides, see Figure 3.7b). 

 I was amazed at his ingenious use of the trammel as a compass to find the focal 

points in this simple and exact physical way.  The tool worked quite well as a compass, 

since the pen distance was already set, and all he had to do was hold the pin fixed in the 

track at one point and rotate the trammel stick.  After Jim marked the foci on the 

Plexiglas, I offered to hold the tacks at these points while Jim traced over the trammel 

drawn curve using the loop of string.  The tracing seemed very accurate to Jim (and to 

me). 

 (The interview had now lasted 50 min.) 
 

 
    Figure 3.7b 
 

D:  Is there any other kind of argument that could really nail this down? 

J:  Well I'm guessing that the equation is going to be the same for both, since we have 

the equivalent pieces. 
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D:  Is there a way to get an equation out of this device (the trammel) that talks about the 

geometry of this device? 

J:  I'll do the same thing that I did before.  I'll take a point here, 

� 

(x, y) ... (labels an 

arbitrary point on the curve in the first quadrant, see Figure 3.7b)..... And then look at 

what this thing doing while it's drawing that point there (places the trammel so that the 

pen is on his marked point).  I said before that the important piece of information with 

this machine was the distance from here to here (pin to pin), and then these distances 

here (pen to each pin)  call them d and a (labels Plexiglas as in Figure 3.7b).... hmmm..... 

Then I started looking at the right triangles....... Now what describes that action?.... 

hmmm... let's see..... given a certain 

� 

x .... (draws a vertical line from his point and marks 

the 

� 

x -coordinate on the horizontal axis)......... (long pause as Jim studies both the 

trammel and the loop of string figure.  He then draws a horizontal line from his point to 

the vertical axis, dotted in Figure 3.7b)..... What I'm doing is I'm looking at these two 

similar triangles (points to small upper and lower right triangles with hypotenuses 

� 

a  

and 

� 

d  on the trammel, see Figure 3.7b)...  I think that they're similar. 

D:  Why do you think they're similar? 

J:  Well they share...ummm..... (Moves the trammel to watch its action.  Seems to be 

checking to see whether what he is about to say is invariant along the curve.)..... first of 

all they share the same angle (marks angles, see Figure 3.7b).....  Since it's (base of upper 

triangle) parallel to the 

� 

x -axis ........  and their hypotenuses are in a constant ratio (points 

to 

� 

a  and 

� 

d  on the trammel)...... And I'm guessing that these sides here, and these sides 

here (other pairs of sides in the upper and lower triangles).... are also in constant 

ratios.... that's what you mean by similar.....  How to make that clear?.... unnnn..... (long 

pause) 

D:  Could you write down some of these ratios you're talking about so I could see an 

example? 

J:  As far as numbers....  numerical.... 
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D:  Any way.... just so we have it written down.... which things are... uhh 

J:  Well I'll have to label these so I can talk about them (indicates similar triangles)..... 

well I said that this was d and this was a (hypotenuses)..... and let's see........ 

information......... 

D:  You're measuring your coordinates from where? 

J:  I meant this point here (labeled point 

� 

(x, y) ). 

D:  That's the point on the curve, but in terms of lengths, just to be real clear, what's 

� 

x  

and what's 

� 

y ? 

J:  I meant this distance on the 

� 

x -axis and this distance on the 

� 

y -axis. 

D:  So from the center here that's 

� 

x  and that's 

� 

y .  OK. 

 Jim then decided to clean up the figure by erasing the 

� 

a,  d,  c  triangle that he had 

drawn to show the position of the curve's foci.  He said that those lines were 

"distracting him."  Originally he was trying to copy the method of generating an 

equation that he had done previously with the loop of string, and so he thought it was 

important to know the foci, but now that he was looking at the similar triangles he 

found this focal triangle distracting.  I then asked Jim to review what he had told me 

about the similar triangles that he had mentioned.  He pointed out again the pairs of 

sides that he thought "would be in constant ratio." 

J:  I'm forgetting my geometry here, but is  Side, Angle, Angle enough for triangle 

similarity?.... I can't remember... (pause) 

D:  I'll believe that those triangles are similar. 

J:  I'm trying to convince myself..... 

D:  Well.... you've got right angles. 

J:  yeah 

D:  And then you told me that these two angles are equal (marked in Figure 3.7b). 

J:  Should be.  Right. 

D:  Now if they've got two angles the same, what about the third angle? 
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J:  Of course it's going to be the same.  Right.  That is a similar triangle.  Angle, angle, 

angle. 

D:  So, I believe your statement about the constant ratio. I'm just wondering what that 

has to do with the curve? 

 This interchange shows the disparity between Jim's confidence in his own 

precise and accurate observations, and his confidence in his ability of apply rules 

learned in mathematics classes.  Even when it comes to geometry, there is a gap.  As we 

shall see later this gap is much greater for Jim, when it comes to algebraic thinking. 

 Jim began pacing around and looking at the figure and the curve from various 

perspectives.  He took off his glasses and appeared deep in thought. 

 (The interview had now lasted 1 hr. and 3 min.) 

J:  Often when I'm looking at something I like to move around..... Sometimes I'm 

looking at something for such a long time that I kind of forget about...... you know... I 

miss something obvious..... (long break.  I get Jim a coke and he paces around 

thinking)......  Yeah, my problem is that I'm getting stuck in the same.... uhh.... because it 

worked so nicely I think with that setup (loop of string), and I'm  trying to think about 

what the... uhhh.... (pause). 

D:  Well what do these similar triangles say?  You were telling me something's in a to d? 

 Jim pointed at the lengths in the triangles that he knew were proportional, but he 

floundered around when it came to giving any of these sides names other that "this 

distance,"  or "the base of that triangle."  He had now expressed several times with 

gestures and pointing the proportions in the triangles, but he would not label or name 

any of the sides other than the hypotenuses 

� 

a  and 

� 

d .  He tried to express the base of the 

lower triangle as "something minus 

� 

x ."  He had previously showed me where 

� 

x  and 

� 

y  

were in the picture so I asked him a review question. 

D:  Are 

� 

x  and 

� 

y  the sides of any of these triangles? 
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J: 

� 

x  is the base of this one here (the upper triangle). 

� 

y  will be the side of that one (the 

lower triangle). 

D:  Can we write down anything using what we know? 

 Jim took a sheet of paper and made a copy of his figure and labels 

� 

a , 

� 

d , 

� 

x , and 

� 

y  

(see Figure 3.7c).  He then said that he wanted to "declare something new."  At first he 

said he might want to give a name to the distance of the horizontal pin from the center, 

so that he could then subtract 

� 

x  from it and get a name for the base of the lower 

triangle.  He never declared such a name, but he told me what he wanted to do. 

J:  Yeah I'm finding the best way to express that length.... and then once I get that I can 

express this here (height of upper triangle), and this here (base of lower triangle).... 

these lengths in these triangles so I can get these triangles all pinned down.  I need to 

get names for all the sides. 

 I encouraged Jim to work on this, and I specifically encouraged him to introduce 

a new variable if he needed one.  I said "why don't you give some of these things 

names, and maybe we'll find out what they are later," but Jim was very hesitant to add 

any new algebraic variables to his picture even though he became a little flustered using 

"this length"  and "that distance"  all the time.  Jim was physically convinced that all you 

needed to know to set up the device and draw a curve were 

� 

a  and 

� 

d , so he wanted to 

get an equation using only what he saw as relevant.  Unlike Tom, Jim was extremely 

uncomfortable with the idea of introducing any intermediate or superfluous variables.  

Algebraic convenience did not suit Jim's purposes since he had no faith in his algebraic 

abilities.    He finally turned to the lower triangle in Figure 3.7c. 
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    Figure 3.7c
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J:  Well I can express these sides using.... just saying.... since 

� 

d
2 equals 

� 

y
2 plus ...... 

whatever..... plus..... uhhh..... I don't  really know what to call it....   

F maybe?... uhhh ....squared.. (indicates base of lower triangle). 

D:  OK so call it F,  the base the of the little triangle? 

J:  Yeah...... oh...... it's got to be 

� 

d
2

! y
2 . 

 At this point Jim was off and running.  He had immediately eliminated the 

variable, F, and it was never mentioned again.  It only appeared once on his work sheet 

(Figure 3.7c).  Right away Jim saw that he could use the Pythagorean theorem on the 

upper triangle to find it's height as 

� 

a
2

! x
2 , without introducing another variable.  He 

told me again that things were in constant proportion, and so I asked him what things.  

He told me that 

� 

a  and 

� 

d  were in the same proportion as "

� 

x  and that expression there"  

(i.e. 

� 

d
2

! y
2 ).  I asked him to write it down. 

J:  You see I don't really know how to express the ratio (long pause). 

D:  Well how do you usually write ratios?  Do you have any notation or way of writing 

ratios? 

J:  Well you could say something is in a one to two ratio like (writes 1:2) 

D:  You like to write them with colons? 

J:  Well I mean you could say something is in an "

� 

a  times 

� 

x "  to  

"

� 

d   times 

� 

d
2

! y
2 "  (writes: 

� 

ax : d d
2

! y
2 , scratched out in Figure 3.7c)....  You see I 

don't know if I'm going in the right direction here with the ratios.  Sure they're similar 

but........... 

D:  Don't ratios give equations in some way, shape, or form? 

J:  Yeah....... It's a lot easier to say that 

� 

a  is to 

� 

x , as 

� 

d   is to 

� 

d
2

! y
2 .  

(Jim writes: 

� 

a

d
=

x

d2 ! y 2
, see Figure 3.7c) 

D:  Is that an equation for this curve? 

J:  I don't know.   



    

David Dennis Curve Drawing Devices http://www.quadrivium.info  
 

284 

D:  Looks like an equation. 

J:  It's an equation that's for sure (laughs)....... but what's it saying......  It's giving 

you.....uhhhh...... I don't see why not.  I mean it's giving you this distance 

� 

x  and 

� 

y , 

given an "

� 

a" and a "

� 

d"  which we can get from those things (points at trammel). 

D:  OK, so it's an equation that talks about this curve.  Is it the same equation that we 

got over there with that string device?  Is this equation equivalent to those two over 

there, or is it different? 

 Jim looked very glum at the thought of having to do any algebra.   

J:  It's got the same look to it as far as the ratios go.... things like that .... you know.... the 

relation of the ..... but the thing is that there are no squares besides down here (indicates 

� 

y
2 under the radical but no square on 

� 

x , or 

� 

a).  Whereas on the other side over there 

(indicates: 

� 

x
2

a2
+

y
2

a2 ! c 2
=1, from loop of string ) there are no square roots there are just 

squared numbers. 

D:  Well play around with it; maybe it's different?  

 Jim was hesitant to believe that this could be an equation for this curve, because 

it looked very different from the reduced elliptic equation that he knew, and because it 

had been too easy to obtain (he says this later).  He was expecting some complicated use 

of the distance formula as he had seen in class for the loop of string.  Using similarity 

seemed too easy to him.  Jim was also very hesitant to perform any kind of algebraic 

manipulation.  He said he was very "bad at algebra," and the thought of having to do it 

made him very anxious.  He muttered to himself with a foreboding tone "here come the 

rules."  He stared at his new equation for while trying to think what to do.   

 Jim's every algebraic move was made with trepidation.  He repeatedly asked for 

help.  Before each step he would ask me "is it equivalent to say.....?" or  "is it legal to.....?"  

He tended to get lost in his notation for several reasons. He liked using the eraser to 

make changes an algebraic expression, rather than writing a new modified equation.  
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When simplifying an expression, he would also tend to run the writing together 

without putting in an equal sign (e.g. in the lower right hand corner of Figure 3.7c, he 

did not at first have the second "=").  I cautioned Jim against such practices.  In spite of 

all this, he did not make any gross algebraic errors, although he did not know what to 

do with the radical in his equation.  When he asked me I suggested that he would have 

to "square both sides of his equation." 

J:  I need to work on my rules.  I need to get down and do some of this stuff.  But I just 

hate doing it so much that I have neglected it. 

 Jim did know what he was trying to do.  Once the radical was gone he 

immediately tried to obtain the term  

� 

x
2

a
2 ,  because it appeared in the other equation.  

Once he had that, he continued on and was pleased when the equation eventually 

appeared as: 

� 

x
2

a2
+
y

2

d2
=1 .  He looked over at the loop of string equation (i.e. 

� 

x
2

a2
+

y
2

a2 ! c 2
=1) and smiled.  I asked Jim about the difference between the two 

equations, and he knew that 

� 

d
2 and 

� 

a
2

! c
2  were the same.  That, after all, was the 

geometric relation which he had demonstrated so well when he used the trammel as a 

compass. 

J:  I'm happy. 

D:  Does this convince you that the curves are same? 

J:  (with resignation) Well, if they have the same equation, I guess I should be 

convinced. 

D:  But equations, deep down, don't seem to convince you very much.  Is that what 

you're trying to tell me?  Do I detect a skeptical note? 

J:  No, I'm happy.  I mean seeing the equation the same makes me happy, but I was 

more convinced the first time I saw the similar..... uhh..... graph... or drawing... or 

whatever you want to call it.......  Well I can't say I was more convinced..... I was quite 

certain......  I mean I took a large step when I saw the relationship between the drawing 
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tool we had here (trammel) and the string over here, and getting those two to draw the 

same thing; I immediately thought OK there doing the same operation.  They're making 

the same kind of picture.  Therefore they're doing the same thing.  They're operating in 

the same way.  And they probably do have a similar equation.  And getting that 

equation to work out, you know, confirms it..... but it's not like it's a great shock........  

It's something I already knew.....  You know, I kind of assumed that it was like that. 

D:  So the physical experience was really a more convincing experience to you  than an 

algebraic experience? 

J:  Well, not to belittle the power of the algebra to show you, without a doubt that it's 

like that, but I mean I was relatively certain........ If you can look at my steps of 

certainty.....  I took a large step from here to here (gestures about one foot on the table) 

when I first saw it drawn out and I could get it to do the same thing.... and from here to 

here (gestures about 2 in.) when I saw it (the algebra)...well yeah OK...... This being my 

total amount of certainty. 

D:  (laughing) I see...  if you had to put it on a one to ten scale?  I'm looking at a ratio on 

your fingers there of ahhh...... looks like maybe... 

J:  Eight to two. 

D:  Eighty percent confident with the experimentation, and the algebra give you 

another twenty percent on top of that?  Something like that? 

J:  (laughs and nods) yeah.....  Some people really like the algebra.....  I need to get more 

familiar with it......  But it's.... (shrugs). 

D:  Well, just looking at this algebra..... We arrived at this equation (Jim's trammel 

equation), and here you worked it all out. 

J:  Right. 

D:  Over there (two loop of string equations) we skipped some big horrible step that 

you said is in some book, or that you saw your teacher do.  If you had to derive an 

equation of an ellipse which method would you rather do? 
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J:  I'd definitely rather do that (his trammel equation). 

D:  You like the similar triangles better? 

J:  Yeah 

D:  That was all distance formula, although we had some Pythagoration in here too. 

J:  Actually it surprised me that I was able to get it so easily.  I thought I was going to 

have to go with something like finding this distance here and this distance here 

(indicates the distances of the trammel pins from the center), and then subtracting the 

� 

x 's and getting an idea of what 

� 

x  was.  But it worked out nicely.  I guess doing it with 

similar triangles was a good idea, I mean it looked right. 

D:  That was what jumped out to your eye: these two triangles? 

J:  Yeah, I mean I saw them.  When I approach something I try to draw in everything 

that I can, so I can get an overall sense of what it's going to look like, and then look at 

each piece of it with the greatest amount of ...uhhh ... greatest degree of.... uhhh.... I 

want to have all the detail, including it.  So then I can look at the overall thing, and then 

look at each piece and how it relates to the overall drawing, rather than getting caught 

up in algebra (voice drops).  Algebra for me, it helps to make something certain and to 

give it a great deal of shape, but the actual thought of how something's going to work 

out happens in the geometry. 

D:  I see.  Geometry is somehow more deeply convincing to you? 

J:  (nods) Also much easier to understand the way that things interact with each other.  

Watching this piece move along like this (moves trammel along curve), and watching 

this decrease as this decreases (indicates two horizontal distances, one from the pen to 

the vertical-axis and the other from the horizontally moving pin to the center),  I can see 

that those are in a fixed ratio from watching this thing move. 

D:  Which of these devices do you most enjoy drawing with? 

J:  The string is more convenient.  There's less to worry about physically speaking.  On a 

basic level the tacks hold the string nicely while this (trammel) has to slide through slots 
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and things like that.  But it's also.... it's kind of mystical, the way this slides around and 

draws it like that (makes trammel action gesture), whereas with the string you can 

definitely see, because there's definitely something holding back the pen.  Moving 

around, you can see the thing moving around in a prescribed ellipse.  Whereas with this 

(the trammel), you're not directly controlling where this thing (the pen) is; you're 

controlling where it's sliding, and you sort of watch it moving around (shows that when 

he draws with the trammel his hand is on the pins rather than on the pen).  I think it's 

initially a little bit more difficult to understand, but it's more interesting...... As I said the 

first time that I saw it I expected it to do something completely different.  I expected it 

to make a sort of a star, you know something with points (see Figure 3.6a).  It's 

definitely not as intuitive as the string and the tacks.  Not just because I'd seen the string 

and the tacks work before, but because you can definitely see how it's limiting the 

distance the pen is going to go. 

 (The interview had now lasted 1 hr. and 33 min.) 

 After Jim's long hard work and algebraic frustrations I was not sure whether 

either of us had the energy to fully discuss the folding arm device.  Jim's 

philosophizing, however, seemed to lift his spirits and so I brought out the device, and 

asked him if he wanted to experiment with it.  This return to a physical and geometric 

setting enlivened Jim even more.  He stayed for more than another hour and worked 

with the device until he fully understood its action.  As I shall describe, he found 

similarity relations in it's action, and eventually used these to write an equation of the 

curves that it drew.  Reducing this equation algebraically to his previous elliptic 

equation was more difficult than for the trammel device, and Jim felt lost and 

frustrated, although he very much wanted to see an algebraic confirmation of his 

experiments.  He pleaded for advice and I eventually did come to his aid in a purely 

formal algebraic sense, offering him a series of strategic hints, which enabled him to 

simplify the equation.  Jim was very satisfied to see his geometric thoughts confirmed. 
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 My description thus far gives a good picture of Jim's conceptions and 

procedures.  His work with the folding arm device was of the same nature, and so I will 

not give such a fully detailed account of the remaining 1 hr. and 10 min. of this 

interview.  I will instead summarize the main points in the order of Jim's thinking.  This 

summary will be important, however, when comparing Jim's conceptions with those of 

Tom.  Jim will eventually draw the same figure that Tom drew, and work with same 

pair of triangles, but his approach and his conception of motion and especially his use 

of algebraic variables are all very different from Tom's. 

 Jim began by reconsidering one of the curves that he drawn the previous week 

with the pen set fairly close to the sliding pin.  This curve was very eccentric and 

looking at only one half of the curve Jim thought that it strongly resembled a parabola.  

Jim began thinking about how one could empirically distinguish half of a highly 

elongated ellipse from a parabola.  He told me about the focal properties of the 

parabola, and its uses in such things as solar heaters and car headlights.  He then 

considered the focal properties of an ellipse in terms of bouncing light, and thought 

about how the light would converge to the other focus with an ellipse, and how this 

might provide an experimental way to distinguish ellipses from parabolas.  He 

described an experiment that he had seen with marbles bouncing inside of an elliptic 

tray. 

 Jim then discussed how he would set up the first two devices to copy curves 

drawn with the folding arm device and vise versa.  He looked immediately at where the 

curves crossed the tracks, and saw in the folding arm device how he could control these 

lengths (

� 

a  and 

� 

d).  He then said that these could be immediately transferred to the 

trammel, and from these he could calculate the focal distance (

� 

c ) as before for setting 

up the string device.  Jim was very confident about getting at least the lengths of the 

axes to match up. 
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 Since Jim had explicitly stated his visual preferences in approaching these 

problems, I next asked him what he "saw in the action of the folding arm device."  He 

studied the motion of the arms along a curve that he had drawn.  He then marked a 

point on the curve in the middle of the first quadrant and drew a vertical line from it to 

the horizontal axis.  Jim first saw the two arms making an isosceles triangle with the 

horizontal track.  He then drew in a vertical from the hinge (see Figure 3.7d), and said 

that this divided that triangle into "two congruent pieces by Side Angle Side."38  He then 

tried to see how the 

� 

x -coordinate of the pen related to this. 

 Jim looked at the device in silence for several minutes moving it slowly.  He 

thought of several triangles that he might consider, and decided to first label the base 

and height of the large isosceles triangle that he first saw formed by the folding arms.  

Figure 3.7d shows what Jim drew on the Plexiglas.  He let 

� 

M  be its height (i.e. 

� 

y -

coordinate of the hinge), and 

� 

N  be its base (i.e. 

� 

x -coordinate of the pin).  He then said 

that when the arm was fully extended (

� 

M = 0), and the pen was crossing the 

� 

x -axis, 

that 

� 

N  would be equal to 

� 

a+ d  (the sum of the half axes of the curve). 
 

                                                 
38  I did not challenge Jim on his reasoning here.  Tom gave the same reason at this point, and I 
accepted it with him as well.  Looking more carefully at the situation, one sees that "Side, Angle, 
Side" is actually not the appropriate reason for the congruence, but rather "Side, Side, Angle," 
where the angle is a right angle.  This congruence is sometimes more accurately referred to as 
"Right, Leg, Hypotenuse." 
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    Figure 3.7d 
 

J:  I want get a hold of what his thing is doing.  I mean, I can see what it's doing, but as 

far as mapping it out...... hmmmm....  Well this distance, 

� 

y , (indicates 

� 

y -coordinate of 

the marked point on the curve)..... is dependent on..... (draws in the horizontal line from 

the point to the altitude of the isosceles triangle formed by the arms).....  I think I may 

again do similar triangles.....  I'm saying that this y distance can be found.....  if you're 

given an 

� 

N  ....and you're given an

� 

x ?.... well 

� 

x !
1

2
N  would be this distance here (base 

of small upper triangle in Figure 3.7d).  This is 

� 

M ! y  (side of the same triangle). 

� 

M  can 

be expressed on a more basic level.  I think all you need to know are 

� 

N .... at any time.... 

and this distance here (length of the arms).....  Which we'll call 

� 

L . 

 (The interview had now lasted for 2 hr.) 

 Jim then wrote that: 

� 

1

2
N

! 

" 

# 

$ 

2

+M
2

= L
2

 , although at first he neglected to write the 

parenthesis.  He then solved for 

� 

M  and wrote: 

� 

M = L
2

!
1

4
N
2  and explained how this 

eliminated 

� 

M .  He still was not happy working with 

� 

N  because it was not constant.  

J:  It's a moving piece (

� 

N ).  It's constantly changing as 

� 

x  and 

� 

y  are changing whereas 

the 

� 

d  and the 

� 

a  in the previous things were fixed lengths.  So I'm thinking about just 
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talking about this length here, call it 

� 

Q  (from the hinge to the pen in Figure 3.7d).....  

(long pause).....  I'm thinking about a similar triangles argument again (points to figure).   

D:  So what triangles do you want to look at here? 

J:  These two.  It's the same as we had before.  I'll talk about 

� 

Q  and 

� 

P  (labels length 

� 

P  in 

Figure 3.7d from the pen to the pin and then points to right triangles with hypotenuses 

� 

Q  and 

� 

P ).  It seemed to work before so maybe it'll turn out OK now..... We know that 

� 

P  and 

� 

Q  are in a fixed ratio as before.  And I can say that this side here is... ahhh... 

(points at base of lower triangle in Figure 3.7d with hypotenuse 

� 

P , and then looks back 

at his trammel derivation worksheet, Figure 3.7c).  I had uhh.... yeah, it's not as simple.  

What I'm trying to do is basically set up what I had before.  The only problem is that, 

again this here is 

� 

y  (height of lower triangle), but this here is not 

� 

x  like it was before, 

it's another quantity (base of upper triangle).  In this case, it's 

� 

x !
1

2
N .  And I don't like 

having that 

� 

N  in there because of...... uhh I was trying to think of putting it in terms of 

something else.  But my other sides are 

� 

M ! y  (height of upper triangle) and 

� 

M  is also a 

measured number, and how can I get it.  OK I know 

� 

P , 

� 

L  and 

� 

Q .  Those are always 

constant..... (long pause)......  

 Mimicking his trammel derivation, Jim then labeled the base of the lower 

triangle as 

� 

P
2

! y
2 .  Jim was then happy with his expressions for all three sides the 

lower triangle because they did not involve 

� 

M  or 

� 

N .  He then looked hard at the upper 

triangle and searched for some way to express it's sides without using 

� 

N  and 

� 

M .  Jim 

was stuck for a while on this problem.  He eventually asked me for some sort of hint 

that might get him going again.  He seemed intuitively convinced that there was some 

way to express these sides using only 

� 

x , 

� 

y , 

� 

Q , and 

� 

P .  I eventually  pointed to the base 

of the lower triangle which he had just labeled with 

� 

P
2

! y
2 . 

D:  You just solved for this.  Right? 

J:  Right. 
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D:  And what's this? (I now pointed to the 

� 

x -coordinate  of his point along the 

horizontal axis) 

J:  It's just 

� 

N  minus that (the base of the lower triangle). 

D:  But it's also 

� 

x .  Right? 

J:  Oh, OK, so 

� 

x  and that  (points to: 

� 

P
2

! y
2 )  add up to 

� 

N . 

 Jim then wrote that: 

� 

P
2

! y
2

+ x = N .  Jim puzzled for a while over what to do 

with this statement.  He wanted to relate it to the base of the upper triangle which he 

had written as: 

� 

x !
1

2
N , but his anxiety over algebra began to emerge, and he got 

flustered.  I told him to calm down, and just write down what made sense from his 

picture.  He said that he had to take his expression for 

� 

N  and cut it in half and subtract 

it from 

� 

x , but doing this algebraically seemed a daunting task to Jim.  I asked him to 

just write down what he wanted to do without trying to simplify it first.  He then wrote 

that the base of the upper triangle was equal to: 

� 

x !
P2 ! y2 + x

2
.  He then said that he 

had two sides of the upper triangle, so he could use the Pythagorean theorem to find 

the third side of the upper triangle. 

D:  OK, where would you go with that? 

J:  Well I think I'd sort of end up in the same spot where I had... (looks at his trammel 

worksheet, Figure 3.7c)....  You know, I was starting off with a ratio here, and then I'd 

say like.... uhh.... the same way I did here, you know 

� 

a  is to this side as 

� 

d  is to this 

side......  So here I'd say 

� 

Q  is to this thing up here, as 

� 

P  is to that one here.  

 Jim wrote: 

� 

Q

P
=

x !
P
2

! y
2

+ x

2

P 2
! y 2

 

D:  Is that an equation with the right things in it?  You were worried before about 

having some things that varied. 
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J:  Yeah I think it will be OK, because the only things that I'm dealing with here are 

� 

Q  

and 

� 

P .  I said that 

� 

P  was this length here, and 

� 

Q  is this length here and I didn't even 

use 

� 

L  (points to arm of device). 

 I next asked Jim what kind of equation he would expect of get if this curve really 

were an ellipse.  He looked at the arms in the positions where they crossed the axes, 

and said that what he had previously called 

� 

d , was now equal to 

� 

P , and what he 

previously called 

� 

a , was now equal to 

� 

L +Q = 2Q + P .  He then said if this were really an 

ellipse then he would expect the equation to come out as: 

� 

x
2

(2Q + P)2
+
y
2

P 2
=1 . 

D:  I know algebra is not your strong point, but do you think there's any chance that this 

equation is the same as that? 

J:  Ohhh... (sighs).....  How would I go about changing that.......  Well, I simplified it last 

time, and it's the same argument. 

D:  Do you have any intuitions here? 

J:  I had intuitions about geometry, but not about this (looks gloomy and tired).   

 (The interview had now lasted for 2 hr. and 30 min.) 

D:  Do you want to try to do this? (algebraic reduction). 

J:  Yeah.  It would give me some satisfaction. 

  With a very clear idea about where he was going, Jim started in on trying to 

simplify his ratio equation : 

� 

Q

P
=

x !
P
2

! y
2

+ x

2

P 2
! y 2

.  He failed at first to distribute a 

minus sign, and I eventually pointed this out to him.  He knew that like last time, at 

some point he would have square the equation to get rid of the radicals, but this time 

radicals occurred twice in the equation, and this presented a real problem for him.  He 

wanted to square the equation when one side was still an expression minus the radical, 

which would have led to a real mess.  He was tired and asked for some strategic advice, 

and so I explained to him that since both radicals were same he should put all the terms 
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containing the radical on one side, and then factor it out before squaring.  This was a 

very difficult maneuver for him to envision, since it involved treating the radical as a 

single variable entity.  Although he had easily see the radical as a length in the figure, it 

was not easy for him to see it as an entity when performing algebra manipulations, and 

he certainly did not want to introduce an intermediate variable to stand for the radical.  

After understanding my suggestion Jim worked hard to simplify his algebra.  

Eventually was able to reduce his ratio equation to the standard elliptic form as: 

� 

x
2

(2Q + P)2
+
y
2

P 2
=1 .   

 When he arrived at this form he was immediately aware that the equation 

represented a general ellipse, and that it was consistent with his geometric experiments.  

As before Jim's personal confidence was not based on achieving this algebraic result, 

but this confirmation of his experiments in another representation enhanced his 

certainty.  He very much wanted to see a clear confirmation of what he already 

believed.  Far more than his beliefs about the curves being the same, Jim's confidence in 

the language of algebra was enhanced.  I congratulated him on his fine work, and he 

beamed with satisfaction.      

J:  It makes me feel good to get that!  

 (The interview lasted for 2 hr. and 40 min.)  
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3.8  A Comparison of the Methods and Epistemology of Tom and Jim 

 Let me begin with an example of the kind of reductive argument that can be so 

misleading when trying to think about educational issues.  From a strictly formal 

mathematical view, the work of Tom and Jim on both the trammel and the folding arm 

devices might be said to be the same.  They both drew the same figures, and analyzed 

the same pair of triangles on both problems.  They both worked with the same sets of 

variable quantities using only different letters.  Consider their work on the folding arm 

device.  Jim's 

� 

N  is the same as Tom's 

� 

! x .  They both set up the same expression for the 

base of the upper triangle, Jim's 

� 

x !
1

2
N  and Tom's 

� 

! ! x "
! x 

2
.  They both replaced the 

� 

x -

coordinate of a point on the trammel drawn curve, with these expressions to obtain an 

equation for the folding arm motion.   They then both faced the problem of how to 

eliminate the extra variable (

� 

N  or 

� 

! x ), so as to get an equation in the appropriate 

variables that they could compare to a standard elliptic equation.  The immediate form 

of the equation into which they substituted these expressions appears different, but that 

was only because Jim wrote the equation directly as a ratio from similar triangles, while 

Tom went to a functional form and used trigonometry to make his substitutions. 

 If, after their experiences, Jim and Tom had both submitted the kind of terse, 

summary lab reports that are often encouraged in math and science classes, their 

teacher might well have said that they had both used the same method of analysis to 

solve the problem.  Tom would undoubtedly have cleaned up and condensed his big 

messy strings of equations, while Jim would probably never have mentioned his long 

rounds of physical experiments.  Tom might never have described his view of the outer 

folding arm as a trammel action being transported by the inner rotating arm.  Jim might 

never have described his crucial moments of vision when he saw things that were "in 

constant ratio."  A teacher might look at these hypothetical lab reports, and the only 

difference that would appear would be Tom's use of trigonometry to circumvent any 
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mention of the similar triangles from which Jim directly constructed his original ratio 

statements.  Looking at such reports this difference might very well seem trivial. 

 Even a cursory look at what actually went on in these interviews will show the 

superficiality of the preceding reductive argument.  Tom and Jim were very different in 

what they saw, what they did, what they said, and what they believed.  These 

differences are profound and have educational implications that are both 

epistemological and curricular.  These differences and their implications provide a 

powerful justification for the use of "qualitative methods" such as these interviews.  I 

can not imagine a more effective way to investigate these issues.  

 Tom's algebraic skill has become an epistemological stance that affects his 

behavior and beliefs.  His stance is one that is constantly reinforced by both the content 

and method of most mathematics classes.  Tom's skills are the ones that are most likely 

to be praised and rewarded by school mathematics.  His habits of thought make him 

unlikely to engage in any, but the barest minimum of physical experimentation.  I can 

not say whether Tom developed these habits because of the nature of mathematics 

classes and their importance in our school culture, or whether he already had such 

predilections and found a home for them in mathematics classes.  It matters little either 

way. 

 Jim's skills and habits of observation and investigation are much less likely to be 

engaged by our traditional mathematics curriculum.  His ability to play and tinker and 

hypothesize in a physical setting are not often called for in mathematics classes.  Even 

his refined visual sense of ratio helps him on only few occasions, due to the paucity of 

geometry in our curriculum.  What passes for "context" in classrooms is most often sets 

of "word problems" that may describe some situation but rarely involve designing or 

physically experiencing that "context."  Most "contextual problems" are 

decontextualized. 
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 For example, the trammel involves the same action as a ladder sliding down a 

wall, a common rate problem in calculus; yet few teachers of mathematics know that 

the motion of any point on that sliding ladder is elliptical.  I have asked many 

experienced calculus teachers this question and they were all familiar with the rate 

problem, but they were all very surprised that the motion of points on ladder was 

elliptical.  The most common first guess was hyperbolic (i.e. like 

� 

y =1 x ), followed by 

some kind of cusped curve like Jim's star.  Calculus teachers (myself included) have 

taught this "contextual rate problem" for years, but have never physically examined the 

action involved, and therefore tend to have very poor instincts for motion.  A student 

like Jim is far more creative and inspired when given a physical action to control and 

observe.  He can see rates and constant ratios long before he can express them in 

algebra.   

 Tom is a very successful mathematics student, but placing him in the kind of 

physical problematic situation that these curve drawing devices provided, challenged 

him in a way that can only add depth, flexibility, and perhaps an entirely new 

dimension to his well developed talents.  During his first interview, Tom wanted so 

much to use his recently developed skill with parametric equations to analyze the 

trammel.  His skill with this algebraic form had been largely developed through long 

sessions with his graphing calculator, but this tool was entirely embedded in the usual 

approach where equations have the primary epistemic role.  The graphing calculator 

proved to be a frustrating and useless tool here, because of its built-in epistemic 

hierarchy which is the reverse of the problem at hand.  It took Tom a while to realize 

that in order to analyze motion, he could not start with algebraic equations no matter 

how good his "graphic visualization" skills were.  The algebra had to emerge from the 

motion.  The recent educational reform  emphasis on "visualization"  is still locked into 

the same epistemic hierarchy where equations create curves.  Graphs are still secondary 

facilitators that help one visualize an equation (see, for example, any of the many 
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articles in Romberg et. al. , 1993).  Although such reform efforts contribute many 

important educational insights, they do not give truly independent status to different 

representations, and the analytic geometry of Descartes is entirely absent.  They fail to 

complete a cognitive feedback loop.  

 It is interesting to note how Tom's thinking is tied to the narrow traditional 

notion of a function even when this complicates the algebra.  His fundamental insight 

into the folding arm device was to see it as a trammel being transported, and hence his 

algebraic approach was to write the trammel equation, and then modify it with a non-

constant horizontal translation.  He clearly saw the need to write his translation (

� 

! x 2) 

as a function of his 

� 

x -coordinate (

� 

! ! x ), and this was important.  In order to make the 

translational substitution, he felt much more comfortable having the elliptic equation in 

a functional form (i.e. solved for 

� 

! y ).  Why didn't he just make his translation 

substitution directly into the standard elliptic form?  This would have made his 

algebraic reduction very simple.  He said at the time, "it helps me to see it," although he 

did not mean this in a visual or geometric sense, but referred rather to his sense of how 

to keep his algebra straight. 

 Jim, on the contrary, showed no strong inclinations towards traditional 

functional notation.  He was much happier using statements about changing rates and 

ratio equality that directly expressed his geometric vision.  His saw that the folding arm 

configuration contained the same similar triangles as the trammel, but he did not 

associate this directly with his previous equation.  Jim instead preferred to see the ratios 

inherent in the new system, and study their operation.  He too faced the problem of 

how to write the horizontal distance out to the hinge (

� 

N 2 ) in terms of the variables that 

he wanted to see in his final equation, but he saw this problem in terms of the physical 

geometry.  

� 

N  was not constant, and was not something one needed to know to set up 

the device; hence it was not a determining physical parameter of the curve, and 

therefore did not belong in the final equation of the curve.  Jim was very clear on this 
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point.  Although he never used functional language his notion of physical parameters 

that one controls in the device was astute, and his sense of how an equation "talked 

about" what was happening in the motion of the  device was well expressed.        

 I find it sad that a student as talented as Tom would so completely avoid 

geometric language, especially the phrase of "similar triangles."  His experience with 

classical geometry in Course Two must have indeed been negative, as he told me after 

the interviews.  The brief piece of Euclidean formality that passes as geometry in our 

schools was, for Tom, an isolated departure from his path of mathematical 

development as he saw it, and therefore best forgotten.  Perhaps even sadder is Jim's 

longing to return to geometry, as the  piece of mathematics that he most loved.  I think 

that some experience earlier in their curriculum with curve drawing and dynamic 

geometry could have helped to inspire both of these students.  Tom might then have 

seen geometry as connected far more directly with the branches of mathematics that he 

loves.  More importantly, Jim might have found a way to engage more profoundly his 

gift for seeing ratios.  This might have gone a long way towards changing Jim's attitude 

about algebra and mathematics in general. 

 Jim's and Tom's teacher certainly tries harder than many to bring more 

visualization and geometry into his classroom.  They both had strong intuitive and 

visual notions of eccentricity.  It was interesting that neither of them could apply that 

notion to the curves that they drew.  Perhaps this was because their visual experience of 

eccentricity from computer animations was passive.  It was not a concept that they had 

ever applied in the physical sense of measuring it empirically from a pre-existing curve.  

Although the very creative worksheet that Tom showed me from his class, where he 

constructed points on a curve with a given eccentricity, was neither passive nor entirely 

algebraic, it still created a curve from a pre-specified algebraic property.  The curves 

still did not have a primary epistemic role, and so Tom could not reverse the process.  
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 The most pronounced difference between Jim and Tom involved the process of 

how they came to believe that differently drawn curves were the same shape.  Up until 

his last algebraic revision Tom, for example, was quite willing to believe that the curves 

drawn by the folding arm device were not ellipses.  Algebraic equations formed the 

foundation of all of his mathematical beliefs.  Jim's beliefs were formed mainly by 

physical and geometric experience as he so directly expressed (80% according to him).  

Both students found ways to reproduce curves from one device to the other, but its 

impact on their beliefs was not the same.  Perhaps one might say that Tom had a 

healthy skepticism, while Jim was too willing to believe what he saw.  This view, 

however, is oversimplified.  Tom let his algebra run away with him, and convince him 

temporarily of things that were clearly contradicted by his physical experience.  Jim 

would never have allowed this to happen to him.  To be meaningful to Jim, algebra had 

to be a slow, careful and precise confirmation of what he had physically experienced.   

 For both students the experience of connecting and confirming geometric 

experience with algebraic expression was both engaging and satisfying.  All of these 

interviews point up the need to bring about a more balanced dialogue both between 

geometry and algebra, and between physical experience and theoretical language.  Tom 

and Jim could both have benefited greatly from experiences with curve drawing long 

before they reached Course Four.  Curve drawing could have been introduced in 

middle school long before the equations of conic sections were studied.  It could have 

been connected to many other activities; sundials for example.  Having a base of such 

grounded activity would have been beneficial in many ways.   It could have given Tom 

a more flexible sense of geometric expression with deeper connections to algebra.   

 More importantly, it might have given Jim an entirely different feeling about 

algebra.  If Jim saw algebra as a systematic language developed to allow for the 

expression of his physical and mechanical visions, it is doubtful that he would have 

come to see it as boring and fearsome.  Even after having developed these debilitating 
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attitudes, he was still able to work clearly and precisely within a problematic situation 

where his visual skills were clearly valuable and connected to the problematic situation.  

He did not want to avoid algebra at all costs.  He wanted to see how it could express 

what he saw, and validate what he experienced.  By reversing the usual epistemic 

hierarchy, the curve drawing devices gave him the stamina to work on a difficult 

problem for over two and half hours, even when he seemed exhausted.  His physical 

certainty as to what would "come out" gave him the determination to finish.   

 If mathematical language is to become comprehensible to a broader audience, it 

must display early on its capacity for expressing a wide variety of situations.  Most 

often in our curriculum, the linguistic form of mathematics (usually algebra) dictates in 

advance both the forms of classroom discourse and the allowable span of activities.  

That is to say that physical activities and "contextual problems" are introduced as 

examples or applications of pre-established linguistic skills and concepts.  The language 

and symbolisms are not being generated in response to student activity, but vise versa.  

Since semiotics usually dictates in advance the content of mathematics curriculum, 

students are only allowed to discuss activities that fit those forms, and often even 

simple "activities" are only discussed hypothetically, and never materially explored. 

 Such a situation severely disadvantages a student like Jim.  His skills, thoughts, 

and epistemic inventions remain largely unengaged.  Jim does not really hate algebra; 

what he hates is the way that linguistic rules have come to dominate the content of his 

mathematics courses.  When language flowed from physical experience, Jim was quite 

ready to push very hard to coordinate and reconcile language with experience.  As he 

said "the thinking happens in geometry."  Jim had a vision of what he expected of 

geometry, but that vision remained out of touch with school mathematics.  Jim's vision 

was largely a seventeenth century geometric vision, like that of Descartes and Pascal, 

that involved architecture, civil engineering, and mechanical devices.  Jim told me 

about his continued thoughts concerning the operation of a mechanical apparatus that 
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reset pins in a bowling alley.  He was disappointed that the geometry that he learned in 

high school never helped him to even begin to analyze what he saw there. 

 The material in this chapter is more than sufficient to establish the second major 

claim of this thesis (end of Section 1.1).  Both Tom and Jim clearly benefited from their 

experience with these three curve drawing devices.  Tom's firmly established algebraic 

epistemology was gently threatened, and he subsequently gained a broader and more 

balanced view of the possible dialogue between physical curves and algebraic 

language.  Jim's engagement with the curve drawing devices was even more profound 

because they satisfied in him a longing for what he saw as the geometry of the world.  I 

learned a great deal from watching and listening to Jim.  The phrase "these move in a 

fixed ratio" combined with certain hand gestures will always remain with me.  They 

have already become part of my thinking about the learning and teaching of dynamic 

geometry.   

 If mathematics is allowed to confront the uncertainties and ambiguities of the 

physical world; if its language, symbols and notations are allowed to grow directly 

from experiences, then a fully circular feedback loop will evolve an epistemological 

model.  The algebra of equations and functions would then be more than just "the 

rules."  Only then will more students be able to genuinely say, as Jim did at the end of 

his algebraic derivation, "It makes me feel good to get that."   
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Chapter Four: Summary and Conclusions The main goal of this thesis, as 

stated in Section 1.1, was to establish the following three claims:  
1).  To establish the fundamental historic and conceptual importance of curve drawing 

devices in the development of analytic geometry, algebraic symbolism, calculus and the 

notion of functions. 

2). To show how two secondary students of mathematics benefited from their 

experiences with physical curve drawing devices, and that both the geometric and 

algebraic analysis of these devices raised, for them, crucial epistemic issues, the 

consideration of which led them to engage in a more balanced dialogue between the 

physical world and symbolic languages. 

3).  To show that a discussion of the tangents, areas, and arclengths associated with 

many curves need not be deferred until calculus, and that, quite the contrary, an 

understanding of the semiotic importance of calculus depends upon being able to 

correlate its symbolisms with independently verifiable geometric experience.  Such 

experience can be readily gained from the use of physical curve drawing devices, and 

from simulations of such devices using available dynamic geometry computer 

applications. 

 All three of these claims have been clearly and firmly established by the material 

presented, the first and third claims in Chapter 2, and the second claim in Chapter 3.  

What I wish to focus on here is interconnections between the three assertions, and their 

larger implications.  Several questions and directions for future research will arise.    

 The first two claims formed the initial concept that shaped this research; forged, 

as it was, within the theoretical perspective of Jere Confrey's research program as 

described in Section 1.3.  Initially, the main theoretical components guiding the research 

were: genetic epistemology, epistemology of multiple representations, and listening for 
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the epistemic invention of students.  The first two theoretical components created a 

stance from which I conducted historical investigations which, in turn, led me to create 

a set of tools and problematic situations which allowed the third component of student 

voice to emerge.  The third claim of this thesis came later as the work was in progress, 

and was not tested in terms of student voice, but it emerged so strongly from the 

historical research that it deserved the status of being listed as a basic claim.    

 As this research progressed, I began to interpret it in light of the increasingly 

unified theories of Jere Confrey (1993a, 1994e), whose evolution and discussion I was 

privileged to witness first hand.  One element of these newly revised theories is the 

increasing stress that they place on tools and their effect on student voice, in moving 

towards the creation of a balanced dialogue between grounded activity and systematic 

inquiry.  This viewpoint helped to solidify the historical stance taken in Chapter 2, and 

to clarify the analysis of the activities of the students in Chapter 3.   

 The mathematical history of seventeenth century Europe shows a profound and 

balanced dialogue between physical tools and the linguistic development of analytic 

geometry and calculus.  The historical tools involved activities that we would now 

classify largely as mechanical or civil engineering, and these have mostly disappeared 

from mathematics curriculum.  A reading of original mathematical sources from the 

period of the genesis of analytic geometry and calculus, reveals the formation of a fluid 

and active feedback loop between physically generated, geometrical curves, and 

algebraic language.  A person trained in modern mathematics is immediately struck by 

how closely intertwined these tools were with the evolving language.  This is a very 

different perspective; the otherness of history.  I have interpreted this history of 

evolving language as a process of verification through cross checks within an 

epistemology of multiple representations, with physical tools forming an important 

part of the feedback loop.   
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 Taking this view of history helped me to create the physical and intellectual 

structure of the student interviews.  The students were not being taught a direct 

historical lesson, and neither were they being given a problem stated solely within 

modern mathematical language.  The tools and problematic situations presented to the 

students were meant to enable them to enter into a more balanced dialogue between the 

physical and the linguistic, in an open way that would allow for both freedom of 

invention and personal expression.  The students were not reliving history.  This was 

not possible because they had already been formally exposed to the language and 

notations that evolved during the seventeenth century.  The interviews were structured 

to allow them to make contact with a part of a feedback loop which is now rarely 

mentioned in mathematics classrooms, although it historically preceded the form of 

analytic geometry taught in their classes. 

 The invention and expression of the students was clearly influenced by the 

beliefs and linguistic tools that they brought with them.  Tom believed in algebraic 

notation, and it was already a powerful and effective tool for him.    The graphing 

calculator, with which he was so comfortable, embodied (and probably helped to 

create) his epistemological hierarchy.   The curve drawing devices perplexed him at first 

because, by reversing this hierarchy, they did not immediately yield to his favorite 

linguistic approaches.  His notions of representation were challenged, and he was 

compelled to respond in new ways in order to reconcile his physical experience with 

algebraic analysis.  His basic belief in algebraic language was not strongly altered, but it 

was broadened to include a new class of interesting problems that he referred to as 

"engineering type stuff."  

 Jim's epistemology was at odds with formal algebraic analysis, which he 

dismayingly referred to as "the rules."   The curve drawing devices placed him in a 

setting that was much closer to his personal belief structure.  He was delighted to carry 

out extensive physical experiments, and the coordination of a systematic set of physical 
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actions was fundamentally convincing to him without algebraic analysis.  He showed 

great inventiveness in his use of the physical tools (e.g. his location of the foci of a 

trammel drawn curve).  After successfully conducting an algebraic analysis, he was 

pleased by his ability to check things in an independent representation, but this 

linguistic setting was not the primary seat of his belief.  Recall his words when he first 

derived an elliptic equation from the action of the trammel device: 

D:  Does this convince you that the curves are the same? 

J:  (with resignation) Well, if they have the same equation, I guess I should be 

convinced. 

In large part, Jim was already convinced by his systematic physical experiments (as he 

eloquently and explicitly stated in Section 3.7). 

 Both Tom and Jim responded creatively to the challenge to coordinate physical 

and algebraic representations of curves, but while Tom's voice is rewarded and 

encouraged in the classroom, Jim's voice is repressed.  Current mathematics curriculum 

gives Tom an inflated view of the power of his algebraic skills, while Jim's beliefs and 

inventiveness are rarely offered an arena for expression.  Analytic geometry as a 

feedback loop, promoting a balanced dialogue between coordinated physical actions 

and algebraic language, would provide diversified expressive options, as well as more 

flexible and profound mathematical content.  Tom would reap significant benefits.  Jim 

would be given a voice. 

 The third claim of the thesis (concerning tangents, etc.) raises the issue of what 

kind of geometry curriculum might best provide the kind of experience from which the 

language of calculus could emerge.  If language is a tool which codifies, and correlates 

with experience, then perhaps the static shadow of ancient Greek geometry that is 

usually taught is not the most appropriate.  Greek geometry was certainly not designed 

for dynamic or mechanical purposes, but rather for logical and philosophical ones 

(Klein, 1968).  These purposes are still valid ones for some students, but Jim's vision of 
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what he expected geometry to be was connected with engineering and architecture.  

Jim's vision is not an isolated one; many students have expressed to me similar 

geometric dreams.  These dreams are seventeenth century dreams, and they are the 

genesis of calculus.  They deserve a place in the secondary curriculum. 

 Chapter 2 repeatedly showed how one might construct situations for the 

investigation of tangents, areas, and arclengths, through the use of dynamic curve 

drawing devices.  I suspect that one would not have to be overly concerned with a 

precise definition of, for example, tangency if one is dealing with mechanically 

generated curves.  Language like that of Apollonius might well serve introductory 

educational purposes.  A line either "touches" a curve, or "cuts" a curve in the case conic 

sections (no cusps or inflection points).  An exploration of these ideas, through the use 

student interviews, might prove very fruitful.  On a larger scale, it would be very 

interesting to see how the teaching of calculus could change if students approached the 

subject with a systematic physical, and geometric experience of tangents, areas, and 

arclengths.  Calculus would undergo an epistemic transformation when seen by 

students as a language built from, and confirmed by prior experience.   

 Another direction for further research would be to introduce curve drawing 

activities to students prior to algebraic notation.  In this way one might allow for 

inventive physical expression like Jim's at an early stage.  Curves could be studied 

systematically through their geometric methods of generation before the advent of 

graphing equations.  One could then explore how the teaching of analytic geometry 

might change if students approached the subject with a body of systematic experience 

with curves generated in non-algebraic ways.  Once again, the students would see 

language built from and confirmed by prior experience.  Such a journey through genetic 

epistemology might radically transform curriculum, and require an extended set of 

educational experiments, but seems to me entirely feasible.  
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 In terms of student activities, another question left unanswered by this thesis is 

the appropriate role of dynamic geometry computer software.  My own struggles to 

understand the historical material presented in Chapter 2 involved the making of many 

physical models and extensive experiments with Geometer's Sketchpad.  How does one 

find the most meaningful mix of mechanical and electronic tools?  In my own 

experience, it was not easy to get Geometer's Sketchpad to simulate linkages.  While the 

program has nice graphic features, it's linear elements do not want to behave like rigid 

bodies.  The definitional aspects of Geometer's Sketchpad are based on Euclidean notions 

of lines and circles, and sometimes to simulate the simplest physical linkage several 

levels of hidden elements are required.  On the other hand, once one is accustomed to 

these awkward constraints, the software eliminates the problems of friction and 

collisions that can seriously bog down a physical device.  My own investigations of 

seventeenth century mechanical devices was greatly facilitated by the software, but it 

required a considerable investment of time and experience.  Perhaps new and simpler 

software will appear that will more directly simulate curve drawing linkages.   

 The affect on students of mixing physical and simulated devices remains to be 

investigated.  My only conclusion here is that it would be very misguided to approach 

the subject using only computer simulations.  Many of the devices described in Chapter 

2 can be easily built and explored.  Jim's statement that things that moved "in a fixed 

ratio" was as much a tactile as a visual observation.  He used his hands with care and 

accuracy throughout his explorations.  A computer simulation would never have had 

the same effect, and would not have given full range to Jim's inventiveness.  My own 

personal experiences while conducting the historical research confirmed this as well.  

Simulating curve drawing devices would affect both student voice, and epistemology, 

and investigating that would require a more involved study over a longer period of 

time.  Such a study might lead to important insights into how modern epistemology is 
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evolving in response to new tools which can both revive and supplant the devices of the 

seventeenth century. 

 Before embarking on this series of investigations, I began with a large set of 

mathematical experiences and beliefs coming from years of formal training, a body 

unorganized historical knowledge, as well as a vague set of pragmatic educational 

beliefs based upon classroom experience.  After coming into contact with the 

educational research program of Jere Confrey and her associates, all of these were 

transformed and unified by educational and epistemological theories.  I witnessed 

detailed theoretical discussions and saw how these theories shaped and guided work 

with very real schoolchildren, "inspiring and inspired at both ends."39  Without a vision 

of educational theory and its active implications for shaping student investigations, this 

work would not have been possible.    

 Like the feedback model of analytic geometry which I propose, so too 

educational theory and practice form a feedback loop whose epistemic shape is 

transformed by tools.  My reading of seventeenth century documents was shaped by 

both educational philosophy, and by the computer simulations that I built.  The student 

interviews were constructed within a theoretical framework using reconstructions of 

seventeenth tools, but my interpretations of those interviews were transformed by the 

use of the video camera.  I spent many hours as a camera man for Jere Confrey before 

setting up my own student investigations. 

 The larger question that remains is how my historical and student investigations 

will transform my educational theories.  As I continue to investigate any of the 

questions mentioned above, there must be a cyclical revision of the theories that shape 

the experiments.  This preceding research was situated largely within the model of 

radical constructivism, for the methods employed were genetic epistemology, and 
                                                 
39  This phrase is taken from my opening quote in Section 1.1, p.5, where Courant spoke about 
Gauss.  



    

David Dennis Curve Drawing Devices http://www.quadrivium.info  
 

311 

videotaped clinical interviews.  The study, however, focused on a set of physical tools 

and their capacity to transform knowledge and language.  This brings one face to face 

with the issues raised by Vygotsky.  Putting radical constructivism together with the 

theories of Vygotsky is not a clear and simple task (Confrey, 1995; 1994e).  Important 

issues of society and its relations to tools must be considered.  In the near future both 

computers and video equipment will greatly expand their capacities.  Their impact on 

both the conduct, content and theory of educational research is difficult to predict, but 

the feedback loops of knowledge coming from historical and student perspectives, can 

only be studied within the larger feedback loop which simultaneously transforms 

educational theory and methods.  
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