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Negative Exponents and Ratios in 
Wallis 

 
 
 We have often found it interesting to examine some of the ideas in mathematics that did 
not gain general acceptance.  The serious consideration of these alternative conceptions can 
enlighten our thinking and our teaching practice as we try to understand student conceptions.  
The following examination of Wallis' use of negative values within his theory of index and ratio 
is a good example. 
 Wallis interpreted negative numbers as exponents in the same way that we do.  That is, he 
defined the index of 1 / x  as -1, and the index of 1 / x2    as -2, and so on.  He also extended this 
definition to fractions; for example, 1 / x  has an index of -1/2.  He then claimed that the 
relationship between the index and the characteristic ratio is still valid for these negative indices.  
That is, that if k is the index then 1/(k+1) is the ratio of the area under the curve (shaded) to the 
rectangle (see Figure 5a).  In the case of a negative index this shaded area is unbounded.  This 
did not deter Wallis from generalizing his claim.       

  
   Fig. 5a 
 

 When k = −
1
2

, the characteristic ratio should be  
1

− 1
2
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= 2 .  This value is indeed 

correct, for the unbounded area under the curve  y = 1 / x  does converge to twice the area of 
the rectangle.  This is true no matter what right hand endpoint is chosen.  

 When k = −1 , the characteristic ratio should be 
1

−1+1
=
1
0
= ∞  (Wallis introduced this 

symbol for infinity into mathematics).  Wallis accepted this ratio as reasonable since the area 
under the curve  y = 1/x  diverges.  This can be seen from the divergence of the harmonic series  
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+… = ∞ , which had been known since at least the fourteenth century (Boyer, 

1968, Chap. XIV).  

 When k = −2 , the characteristic ratio should be 
1

−2 +1
=
1
−1

.  Here Wallis' conception of 

ratio differs from our modern arithmetic of negative numbers.  He did not believe that 1/-1 = -1.  
Instead he stayed with his epistemology of multiple representations.  Since the shaded area under 
the curve y = 1 / x2  is greater than the area under the curve y =1/x, he concluded that the ratio 1/-
1 is greater than infinity ("ratio plusquam infinita") (Nunn, 1909-1911, p. 355).  He went on to 
conclude that 1/-2 is even greater.  This explains the plural in the title of his treatise Arithmetica 
Infinitorum.  The appropriate translation would be The Arithmetic of Infinities.   
 Most historians of mathematics quickly brush over this concept if they mention it at all.  
Those who mention it quickly cite the comments of the French mathematician Varignon (1654 - 
1722), who pointed out that if the minus sign is dropped in the ratio then we arrive at the correct 
ratio of the unshaded area under the curve to the area of the rectangle.  This was an instance of 
the beginning of the idea that negative numbers could be viewed as complements or reversals of 
direction. 
 We, however, find it well worth pondering Wallis' original conception.  In what ways 
does it make sense to consider the ratio of a positive to a negative number as greater than 
infinity?  In the area interpretation from Figure 5a, we could view these different infinities as 
greater and greater rates of divergence.  Such views are often taken in mathematics.  The area 
under y=1/x3 does diverge faster than the area under y=1/x2.   
 Let's consider an even simpler situation.  If I have $1, and you have 50¢, then we say that 
I have twice as much money as you.  If I have $1, and you have 10¢ then we say that I have ten 
times as much money as you.  If I have $1, and you have nothing, then we could say that I have 
infinitely more money than you.  Many mathematicians would accept this statement.  Now if I 
have $1, and you are in debt; shouldn't we say that the ratio of my money to yours is even greater 
than infinity?  This is a question that is worth pondering.  
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