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Newton's Area Calculations 

 
 
 How did Newton know that he could create an area expression by summing up the area 
for each of the separate terms in a binomial expansion?  He gave no reason at this point in the 
manuscript, but a reasonable reconstruction of thinking would most likely have been based on 
the area concepts of Calvalieri that are assumed in Wallis and in earlier manuscripts of Newton.  
Each individual power has its own characteristic ratio but a sum of different powers has no such 
constant ratio, hence the area contributed by each term in an expansion must be considered as a 
fraction of a separate rectangle in order to use the results about characteristic ratio.  Consider the 
total area under the curve y = axs + bxt  as the two separate pieces shown in Figure 7a, where the 
curve dividing the dark from the light area is y = axs . 

 
 Fig. 7a          Fig. 8a 
 
Leaving the darker area where it is, we could now move each of the line segments that compose 
the lighter area up to the line y = k , where k is the largest value of axs.  (Think of moving the 
lighter area as if it were a deck of cards.)  The lighter area will now fit inside a rectangle on top 
of the one that contains the darker area (see Figure 8a).  The area of the bottom rectangle is axs+1

, and the area of the top rectangle is bxt+1 .  From Wallis we know that the dark area is 
1
s +1

of 

the bottom rectangle, and the lighter area is 
1
t +1

 of the top rectangle, and hence the total area is 

axs+1

s +1
+
bxt+1

t +1
.  
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