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Euler and the Exponential Base e 

 
 
 In the next generation after Newton, Euler made extensive use of Newton's generalized 
binomial expansions greatly extending their range and utility.  Newton used tables to construct 
infinite series, but once the method of formation of this series had been made clear Euler began 
using the series to construct tables.  Euler conducted a lengthy series of investigations 
concerning the questions of which form of binomial expansions are most efficient for the 
construction of particular tables.  From these investigations comes the modern notion of function 
and most of its attendant notation. 
 Euler's notations are familiar to us because during the eighteenth century he wrote a 
series of extremely influential textbooks which greatly standardized mathematical notation.  
Although the form and notation of Euler has been retained in our modern curriculum, much of 
the content and spirit of investigation has been lost.  Euler believed strongly in empirical 
methods and this spirit pervades his famous precalculus text of 1748, the Introductio in Analysin 
Infinitorum  (Euler, 1988).  He felt strongly that the expansion of functions in infinte series is 
one of the basic tools of precalculus. 
 Binomial expansions expose many of the most important properties of functions as well 
as the connections between different functions.  Euler was the first person to calculate the 
number e and show exactly how the hyperbolic area function is a logarithm.  This is 
accomplished entirely using Newton's binomial expansions.  Following this Euler extends the 
binomial series to complex numbers and expands the trigonometric functions.  By looking at 
these series (what we now call the Taylor series for ex, sin(x), and cos(x)) Euler discusses the 
connections which allow him to see these function as one family.  The main content of Euler's 
work which is lost in our modern curriculum, is that by using empirical methods and binomial 
expansions all of these topics can be investigated at an elementary precalculus level.           
 Let us look at Euler's treatment of exponential functions.  In Chapter VI of the 
Introductio,  he presents the usual population and compound interest problems.  However, he 
goes on in Chapter VII to derive several series for computing these functions.  Consider the 
function ax  for a > 1.  Since a0 = 1 , Euler lets aw = 1+ kw , where "w  is an infinitely small 
number."  Here he is approximating ax  with a linear function on a small interval.  k  is the slope 
of the curve ax  at the point (0,1).  The value of the constant k  depends on the base a .  (For 
example, if a = 10 , then k = 2.30258… )   Now Euler expands awj = (1+ kw) j , using the 
binomial theorem just as Newton would. 
 

(20)  awj = (1+ kw) j = 1+ j
1
kw +

j( j −1)
1 ⋅2

k2w2 +
j( j −1)( j − 2)
1 ⋅2 ⋅ 3

k 3w3 +…  

 

Next he makes the substitution x = wj , or  j =
x
w

, or  w =
x
j

, noting here that since w  is 

"infinitely small" we are now supposing that j  is "infinitely large".  (20) now becomes: 
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(21)  ax = 1+ k
j
x

⎛
⎝⎜

⎞
⎠⎟

j

= 1+ 1
1
kx +

1 ⋅ ( j −1)
1 ⋅2 j

k2x2 +
1 ⋅ ( j −1)( j − 2)
1 ⋅ (2 j) ⋅ (3 j)

k 3x3 +…  

 

Now Euler points out that since j  is infinitely large, 
j −1
j

= 1 , 
j − 2
j

= 1 , 
j − 3
j

= 1, etc. 

Hence 
j −1
2 j

=
1
2

, 
j − 2
3 j

=
1
3

, etc.   This conclusion is an intuitive use of limits that is quite 

similar to the way Wallis drew his conclusions about characteristic ratio.   Now (21) becomes: 
 

(22)  ax = 1+ k
1
x +

k2

1 ⋅2
x2 +

k 3

1 ⋅2 ⋅ 3
x3 +

k 4

1 ⋅2 ⋅ 3 ⋅ 4
x4 +…  

 
Letting x = 1 , (22) expresses the relationship between a  (the base) and k  (the slope). 
 

(23)  a = 1+ k
1
+
k2

1 ⋅2
+

k 3

1 ⋅2 ⋅ 3
+

k 4

1 ⋅2 ⋅ 3 ⋅ 4
+…  

 
 Euler defines the number e as the base corresponding to the value of k = 1 .  (22) now 
becomes: 
 

(24) ex = 1+ x
1
+
x2

1 ⋅2
+

x3

1 ⋅2 ⋅ 3
+

x4

1 ⋅2 ⋅ 3 ⋅ 4
+…  

 
Using (23) he computes the value of the base e. 
 
 e = 2.71828182845904523536028…  
 

Looking back at the first part of (21) with k = 1 , we see the familiar statement that ex = 1+ x
j

⎛
⎝⎜

⎞
⎠⎟

j

, or in modern terms ex = j→∞
lim 1+ x

j
⎛
⎝⎜

⎞
⎠⎟

j

. 

 Chapter VII of the Introductio also includes series that compute the inverses of (22) and 
(23).  That is to say, logarithmic series are demonstrated as well as a direct method for 
computing k given the value of the base a.  Many examples are shown, with much discussion of 
their relative efficiency for actual calculation. 
 Unlike many mathematicians, Euler never tried to mask the possible pitfalls of his 
methods.  In Chapter VII he gives an example of how seemingly correct algebra can lead to 
paradoxical results.  The contradiction arises because an alternating series for a particular 
number actually diverges.  Euler's advice is to proceed and faith will return.  That is to say his 
approach to mathematics was empirical.  Like Newton, he created equations by analogy and then 
tested them in various ways for to see if the results were consistent.  Formal proofs of the 
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conditions for the convergence of these binomial series were not given until nearly a century 
later by Gauss. 
 Throughout the Introductio, Euler made free use of complex numbers as well as the 
infinitely large and small quantities seen in the above example.  He found that the series 
described above allowed him to extend the domain of ex  and ln(x)  to the complex numbers.  
This ended a long controversy between Leibniz and Bernoulli concerning the appropriate 
definition of the natural logarithm of -1 (i.e. ln(−1) = iπ ) (Cajori, 1913).  In order to use 
binomial expansions to directly create series for sin(x) and cos(x), complex numbers are 
essential.  The derivation begins by factoring the identity sin2 (x) + cos2 (x) = 1  into 
[sin(x) + i cos(x)] ⋅[sin(x) − i cos(x)] = 1  (see Euler, 1988, chapter XIII).  Euler then goes on to 
display the profound connections between trigonometric and exponential functions.  Since the 
complex exponential maps vertical lines onto circles centered at zero, it becomes natural to write 
trigonometric functions as linear combinations of exponentials, i.e.  
 

 sin(x) = eix − e− ix

2i
, cos(x) = eix + e− ix

2
. 

 
Polar coordinates became very natural in this setting, and Euler makes extensive use of them in 
Book II of the Introductio . 
 An important point to consider here is that Wallis and Newton started with families of 
functions which through the use of extension, analogy, and interpolation gave rise to binomial 
series.  Euler started with binomial series expansions, and by extension and analogy united 
exponential and trigonometric functions in one family.  This beautiful circle of empirical 
investigations can be carried out at an elementary level and forms the grounded activity upon 
which first calculus and then differential equations were built.    
 
References cited in the text can be found at 
http://www.quadrivium.info/MathInt/Notes/WallisNewtonRefs.pdf 
 


