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The Cycloid: Tangents, Velocity 
Vector, Area, and Arc Length 

 
 

[This is Chapter 2, section 13 of Historical Perspectives for the Reform of Mathematics 
Curriculum: Geometric Curve Drawing Devices and their Role in the Transition to an Algebraic 
Description of Functions; http://www.quadrivium.info/mathhistory/CurveDrawingDevices.pdf 
Interactive applets for the figures can also be found at Mathematical Intentions.] 

 The circle is the curve with which we all have the most experience.  It is an 

ancient symbol and a cultural icon in most human societies.  It is also the one curve 

whose area, tangents, and arclengths are discussed in our mathematics curriculum 

without the use of calculus, and indeed long before students approach calculus.  This 

discussion can take place, because most people have a lot of experience with circles, and 

know several ways to generate them.  Pascal thought that, second only to the circle, the 

curve that he saw most in daily life was the cycloid (Bishop, 1936).  Perhaps the large 

and slowly moving carriage wheels of the seventeenth century were more easily 

observed than those of our modern automobile, but the cycloid is still a curve that is 

readily generated and one in which many students of all ages easily take an interest.  In 

a variety of settings, when I have mentioned, for example, the path of an ant riding on 

the side of a bicycle tire, some immediate interest has been sparked (see Figure 2.13a). 
 

     
          Figure 2.13a 
 

 The cycloid played an important role in the thinking of the seventeenth century.  

It was used in architecture and engineering (e.g. Wren's arches, and Huygens' clocks).  

As analytic methods were developed, their language was always tested against known 
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curves, and the cycloid was the preeminent example for such testing (Whitman, 1946).  

Galileo, Descartes, Pascal, Fermat, Roberval, Newton, Leibniz and the Bernoullis, as 

well as the architect, Christopher Wren, all wrote on various aspects of the cycloid.  

Besides the fact that it can be easily drawn, what makes this curve an excellent example 

for this discussion is that its areas, tangents, and arc-lengths were all known, from the 

geometry of its generation, many years before Leibniz first wrote an equation for the 

curve in 1686 (Whitman, 1946).  

 Some early observers thought that perhaps the cycloid was another circle of a 

larger radius than the wheel which generated it.  Some careful observation will dispel 

this belief; for example at the cusps where the traced point touches the ground the 

tangents are already vertical, but this section of the curve is clearly not a half circle.   

 Galileo used the curve as a design for the arches of bridges.  For this reason he 

sought to determine the area under one arch of a cycloid.  He approached the problem 

empirically by cutting the shape out of a uniform sheet of material and weighing it.  He 

found that the shape weighed the same as three circular plates of the same material cut 

with the radius of the wheel used to draw the curve.  Galileo tried this experiment 

repeatedly and with care, and found again that the ratio of the area of the cycloidal arch 

to that of the wheel which drew it was three to one.  He suspected however that the 

ratio must be incommensurable, probably involving π , and abandoned further 

attempts to more accurately determine the ratio (3:1 is correct as we shall see).   Galileo 

gave the name "cycloid" to the curve, although it has also been known as a "roulette" 

and a "trochoid"  (Struik, 1969; Whitman, 1946). 

 A French mathematician, Gilles Personne de Roberval (1602 - 1675), wrote a tract 

in 1634 that included both the area and tangent properties of the cycloid (Struik, 1969).  

This work was done just before the publication of Descartes' Geometry, and several 

important issues are raised by Roberval's mechanical methods which involve no 

algebra.  He began by imagining a point 

� 

P  on a wheel drawing a cycloid, and at the 
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same time observing a second point 

� 

Q  drawing a second curve which he called the 

"companion of the cycloid."  This second point 

� 

Q  has, at all times, the same elevation off 

the ground as 

� 

P , but always rides on a vertical diameter of the wheel. 

� 

Q  can be thought 

of as the projection of 

� 

P  onto the vertical diameter of the wheel.  See Figure 2.13b which 

shows both curves traced by Geometer's Sketchpad. 

� 

Q  will move forward at a constant 

speed while monitoring the height of 

� 

P .  The path of 

� 

Q  is, therefore, what is now know 

as a sine or cosine curve.  
 

    
    Figure 2.13b 
      

 Points 

� 

P  and 

� 

Q  start together at

� 

A , and come together again at 

� 

S .  In between 

the distance between 

� 

P  and 

� 

Q  takes on all the different horizontal segments that occur 

in half of the circle (i.e. all of the horizontal line segments 

� 

PQ  that form the shading).  

Thinking of the shaded area between the curves from 

� 

A  to 

� 

S  as a deck of cards, if one 

pushes them against a vertical line, they will form a half circle.  Hence the entire shaded 

area in figure 2.13b is equal to the area of the circle.  This reasoning employs what is 

known as the method of Cavalieri, also known as the method of indivisibles.  

 Looking at the symmetry of the companion curve traced by 

� 

Q  between 

� 

A  and 

� 

S  

told Roberval that the area under that curve is one half the area of the entire rectangle 

� 

ABVU .  The entire rectangle has dimensions equal to the diameter and the 

circumference of the wheel, and is therefore equal to four times the area of the wheel 

(i.e. 

� 

(2π r)(2r) = 4(π r 2) ).  The area under the cycloid is the shaded area plus the area 
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under the companion curve, and therefore equals three times the area of the wheel that 

generated the curves, just as Galileo's weighing experiments had indicated.   

 Another way of stating this result is to say that the area of the cycloidal arch is 

always 

� 

3 / 4  of the rectangle that contains it.  Other mathematicians of the time (e.g. 

Wallis and Newton) would have called three quarters the characteristic ratio of the 

curve (Dennis & Confrey, 1993).  This tradition goes back to ancient mathematics, like 

the result of Archimedes that says that if the curve under consideration was any 

downward parabola then the area under the curve would be 

� 

2 / 3  of the rectangle 

containing it.  

 Roberval obtained tangents to the cycloid by thinking of the motion of point 

� 

P  

as two separate motions, one rotational and the other forward (Struik, 1969).  Since the 

wheel is rolling smoothly without slipping the rotational speed of the wheel must equal 

its forward speed (see Figure 2.13c).  One can then construct the tangent as the sum of 

these two equal velocities.  Thus Roberval constructed the tangent at 

� 

P  by considering 

a tangent to the circle at 

� 

P  (

� 

PH=rotational velocity), and a horizontal of the same 

length (

� 

PQ=forward velocity), and then forming the parallelogram on these two 

segments, and then drawing the diagonal 

� 

PV .  Since 

� 

PH = PQ , 

� 

PV  will bisect the angle 

� 

∠HPQ .1 
 

                                                 
1  Roberval applied this same method of finding tangents by components to the parabola and the 
ellipse.  For example a point on a parabola is increasing (or decreasing) its distance from the 
focus at the same rate as it is increasing (or decreasing)  its distance from the directrix.  Bisecting 
the angle, or drawing the diagonal between appropriate equal segments will yield the tangent.  
This is nearly the same tangent construction as van Schooten's (see Section 2.4).  
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    Figure 2.13c 
                     

 Since 

� 

PH  is perpendicular to the radius 

� 

CP , and 

� 

∠CPT =∠CTP  (isosceles 

triangle), and ∠TQP = 90° , then 

� 

∠HPV = 90° − ∠CPT =∠TPQ .  Hence the bisector 

� 

PV  of 

angle 

� 

∠HPQ  lies along the line 

� 

PT .  One can deduce from this geometry that this 

tangent 

� 

PV  to the cycloid at 

� 

P  always points at the top of the rolling circle 

� 

T .  Look 

back at Figure 2.13b to see the tangent 

� 

PT  in another position.  Thus the ant on the 

bicycle wheel is always moving directly towards or away from the top of the wheel.  

 One can also deduce from Figure 2.13c that the tangent to the cycloid is always 

perpendicular to the line 

� 

PO  which connects 

� 

P  to the point of contact of the wheel with 

the ground.  In 1638, Descartes saw this directly by approaching the tangent problem in 

a different way.  Instead of a circular wheel, he started by imagining a rolling convex 

polygon (e.g. a square wheel).  Such a figure pivots on one vertex until a side comes 

down flat on the ground and then it shifts to pivot on the next vertex.  Thus any point 

� 

P , moving on a rolling polygon, will have as its path a series of circular arcs of different 

radii.  While the polygon is pivoting on any one vertex, the path of that point 

� 

P  will be 

a circle centered at that vertex, and thus its tangent will be perpendicular to the line 

connecting 

� 

P  to that vertex (i.e. the point of contact with the ground).  Descartes then 

imagined regular polygons with an increasing number of sides, becoming closer and 
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closer to a circle.  From this he deduced that the tangents at each point 

� 

P  on a cycloid 

must always be perpendicular to the segment 

� 

PO  which connects that point 

� 

P  with the 

point of contact 

� 

O  of the wheel with the ground (Whitman, 1946).    

 The approaches of Roberval and Descartes to this problem display their different 

conceptions of mathematics.  Roberval thought in terms of engineering and mechanics.  

He saw the cycloid as two combined motions and resolved them using the 

parallelogram law, in the manner of Galileo.  Descartes' approach is more geometrical, 

and involves seeing a circle as a limit of polygons (a ancient view taken, for example, by 

Archimedes).  Descartes called the cycloid one of the "mechanical" curves that he 

refused to admit to his Geometry, because the regulation of its motion was not "clear and 

distinct"  (i.e. it involved matched simultaneous rotation and forward motion).     

  If a wheel rolls at a constant rate, both of these approaches will yield not only the 

tangent to the path of motion at each point (i.e. the direction of velocity), but also the 

magnitude of the velocity vector as well.  With Roberval's construction, if the wheel is 

rolling at a constant rate, then the horizontal velocity has constant magnitude, and by 

adding it to a vector tangent to the circle, and of the same magnitude as the horizontal 

velocity; one can, at all points, construct the cycloidal velocity vector.  Using Descartes' 

conception of polygonal rolling motion, and thinking of the rotational rate at each 

pivotal contact point as constant, one can see that the magnitude of the velocity vector 

is proportional to the distance of the moving point from the contact point.  This will 

remain true as the polygons approach the circle.   

 One sees, in either case, that the velocity is zero at the cusp of the cycloid when 

the point 

� 

P  touches the ground, and twice the forward velocity of the wheel when 

� 

P  is 

at the top of the wheel.  Using Roberval's conception, this can be nicely animated using 

Geometer's Sketchpad (see Figure 2.13d).  At the point of contact with the ground the two 

motions (rotational and forward) cancel each other, and the velocity vector is zero.  At 
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the top they are both in same direction and the velocity is at its maximum of double the 

constant forward speed of the wheel. 
 

        
    Figure 2.13d 
       

 As the seventeenth century progressed interest in the cycloid intensified and a 

variety of mathematical, physical, and engineering questions were investigated by 

Pascal, Huygens, Leibniz, Bernoulli and others (Arnol'd, 1990; Whitman, 1946; 

Whiteside, 1961; Smith, 1959).  I will present one more investigation of the cycloid that 

gives the arclength of any portion of the curve in a simple geometric form.  I first found 

this "rectification" (i.e. the finding of a straight segment equal to a given arclength) in 

the early notebooks of Newton from 1668 (1968, p. 193), but it also appears in a tract by 

John Wallis of 1659 (1972, p. 536).  It was attributed by Newton to the famous London 

architect Sir Christopher Wren from a tract written in 1658 (Newton, 1968; Whitman, 

1946).  Like Galileo, Wren saw the cycloidal arch as well suited for architecture.   

 We have already seen that for any point on the rim of a rolling wheel, the 

segment that connects the point with the top of the wheel is tangent to its path of 

motion.  Wren showed that the length of this segment is always exactly one half of the 

arclength between the point and the top of the cycloidal arch on which it is moving.  

That is to say in Figure 2.13e, the length of segment 

� 

QT  is exactly on half the arclength 

between 

� 

P  and

� 

T .               
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       Figure 2.13e 
 

 

� 

QT  is parallel to the tangent at

� 

P .  Wren, like others in his time, imagined a curve 

to be made up of small line segments.  Wren then imagined a series of points along the 

curve.  Lines parallel to their tangents are shown radiating from 

� 

T , and a series of 

circles, centered at 

� 

T , pass through the intersection of these lines with the circle 

� 

TQO .  

Each of the small darkened line segments is equal to a small tangent segment to the 

curve.  Figure 2.13e then shows that the segment 

� 

QT  is the sum of pieces each of which 

are half of one of these tangential pieces of arclength.  Thus twice 

� 

QT  must equal the 

entire arclength from 

� 

P  to 

� 

T .   

 I find this theorem startling in its simplicity, especially after having calculated 

arclengths using the integral formulas from a calculus book.  Wren presented his 

argument in the turgid formal Greek style known as the "method of exhaustion," but 

Newton provided only slightly more than what I have already said (1968, p. 193).  The 

use of such methods was becoming quite natural to Newton (and also to Leibniz as we 

shall see in the next section).   

 This arclength property implies that the length of one entire cycloidal arch is 

exactly four times the diameter of the wheel which generated the curve.  The 
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circumference of the wheel is 

� 

π  (≈  3.14) times the diameter.  For a point to traverse one 

cycloidal arch the wheel must revolve once.  The extra distance that is added by the 

forward motion stretches the path of motion from π  diameters to  4 diameters.  It is 

interesting to think back to the ant on the rim of a wheel.  On the upswing, her motion 

is always headed straight for the top of the wheel, but the length of her cycloidal path to 

the top will always be twice her distance from the top at any given moment.  

 I would ask the reader to reflect here on the things which can be known about 

curves solely from considering the actions which produce them.  An equation for the 

cycloid was not written down until after all of the above discussions.  When I think of 

how, in the past, I have presented this curve in my calculus classes using the standard 

parametric equations, I feel that both I and my students learned very little.  In the 

secondary curriculum, cycloids are rarely mentioned, because their equations are 

considered too difficult.   

 What is governing our choice of curriculum?  It would seem to be regulated by 

algebraic convenience.  Students are asked to consider many curves that I have never 

seen in daily life, simply because their equations are tractable.  Analytic methods are 

powerful tools, but letting the tools govern the subjects of our thoughts can only lead to 

tedious and unnatural formalism.  As Leibniz labored to create the language and 

notation that we call calculus, he had to test this language to see that it was consistent 

with what was known about areas, tangents, and arclengths.  Curves such as the 

cycloid were used as critical experiments to test the validity of linguistic constructions.  

Leibniz first wrote an equation for the cycloid in 1686, and then used it to test his 

evolving notations (Whitman, 1946).   

 Leibniz wanted to create a universal language which was capable of expressing 

all known results about areas, tangents, arclengths, and other quantities.  Newton 

accused Leibniz of plagiarism, because he never came up with any previously unknown 

answers to questions about areas, volumes, tangents, or arclengths.  Newton 
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misunderstood the intention of Leibniz.  He was not a plagiarist; he was a linguist.  He 

largely succeeded in his quest for a universal language capable of expressing all of the 

known results from the geometry of his day.   

 It is this sense of language as a human construction, evolving from experiences, 

and fitted to certain purposes, that I want suggest should be brought into the 

mathematics classroom.  By eliminating the discussion of curves like the cycloid, the 

grounded activity which justifies language construction is taken away from students.  

They then have no critical experiments upon which to test the consistency and validity 

of the formalisms they learn.  They learn only about the nature of representations that 

refer to themselves in an endless hall of mirrors.  Students often see mathematics as 

perfect and unquestionable, because they have only experienced it within a self-

referential frame.  Right at the very beginning of the scientific revolution, Pascal 

objected to this general linguistic trend in modern thought.  Speaking theologically he 

said, "Nature possesses forms of perfection in order to show that it is an image of God; 

and faults to show that it is only an image" (Pascal, 1962, #262).  I will take the liberty to 

paraphrase him and say that: Mathematics possesses forms of perfection in order to 

show that it is an image of Nature; and faults to show that it is only an image.  

 
 
References for this article can be found at Mathematical Intentions. 


