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Apollonius and Conic Sections 

 
 

A. Some history 
Apollonius of Perga (approx. 262 BC–190 BC) was a Greek geometer who studied 

with Euclid. He is best known for his work on cross sections of a cone.  
The mathematicians of the 17th century all read Apollonius. Often original works 

of mathematics from this period were written as commentaries on the work of 
Apollonius or as reconstructions of supposedly lost works of Apollonius. When it came 
to the study of curves, they often saw themselves as attempting to extend and 
generalize the work of Apollonius, especially The Conics. Important Arabic additions to 
The Conics from the tenth and eleventh century were also crucial to the mathematics of 
the scientific revolution.  In fact, even to this day, large parts The Conics of Apollonius 
do not exist in their original Greek form, and are known to us only through Arabic 
translations. 

The Conics is written in Euclidean mathematical style: postulates, theorems, and 
proofs, and verbal descriptions of the objects. The geometry is of static, not moving 
objects. There was no algebraic notation, no coordinates, and, in fact, no figures. 

The Conics is a systematic approach to conic sections which takes the view of a 
conic curve in the plane as a set of parallel, ordered line segments from an axis.  This 
approach is very close to the idea of coordinate geometry.  For this reason certain 
concepts developed in The Conics were fundamental in the development of the function 
concept. The Conics contains a variety of beautiful theorems that are very little known 
today.  In particular, the theorems on symmetry, axes and conjugate diameters could be 
studied at the high school level; the main mathematical results used are similarity and 
geometric means.  These theorems were used extensively throughout the seventeenth 
century, for example in Newton's Principia  (1952) for the discussion of planetary orbits. 
B. Basic facts about cones 

The rationale for studying cones was that Euclid’s geometry dealt with lines and 
circles in a plane.  
Definition of a cone 

A cone, for Apollonius, is the shape generated by considering all lines in space 
that pass through a fixed circle and a fixed point (the vertex) not in the plane of the 
circle. In other (modern) words, a line through P and a moving point on the circle 
sweeps out a cone. 
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Figure 1. The cone generated by a circle and a point. 

[Applet: ConePtCircle.html] 
The circle is called the base, or the generating circle, of the cone. The point P is 

called the vertex of the cone. 
Because a cone is defined by an entire line, it has two pieces, called nappes. This 

is important because some planes cut both the pieces (in a hyperbola). Also, the cone 
extends forever in two directions. It does not end at the circle like an ice cream cone. 

If the line connecting the vertex of a cone to the center of the generating circle is 
at right angles to the plane of the circle, the cone is called a right cone. Otherwise it is an 
oblique, or skew, cone. 
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Figure 2. A right cone (at left) and an oblique cone (at right) 

 
(Planes of) symmetry of a cone [Applet: ConeSym.html] 

Any circular cone has two planes of reflection symmetry, which go through the 
vertex of the cone. One of these planes also goes through the center of the generating 
circle. If the cone is oblique, the other plane does not go through the center.  

A view looking perpendicularly at the plane through the center can be 
considered as giving “the” side view of the cone, or its profile. In this view, you will see 
a non-isosceles triangle if the cone is oblique, or an isosceles triangle, if the cone is a 
right cone. 

         
Figure 3. One plane (PAB) of symmetry (at left.) The "side view" (at right.) 
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In this picture, it doesn’t look like plane PCD is a plane of symmetry because the 
cone is cut off (horizontally) at plane ABCD. However, keep in mind that the cone 
extends infinitely, top and bottom. The view from the “top”, along line PO (where O is 
the center of the generating circle) suggests that this oblique cone on circle ABCD is a 
right cone on an ellipse! Note that circle ABCD appears to be an ellipse because it is 
viewed at a non-right angle. 

      
Figure 4. The second plane (PCD) of symmetry (at left.) The "top view" (at right.) 

 
If the cone is a right cone, it has an infinite number of planes of reflection 

symmetry, all the planes through the vertex and the center of the circle. It also has 
rotation symmetry around the line through the vertex and the center, by any angle. 

There are other symmetries that switch the two nappes of the cone. 
Circular cross sections of a cone 

In a right cone, all planes parallel to the fixed circle will have circular sections 
with the cone, and these are the only planes that make circular sections.   

       
Figure 5. The circular sections to a right cone. At right, the top view. 

       
However, in an oblique cone, there are exactly two families of parallel planes 

whose sections with the cone are circles.  One of these families is parallel to the fixed 
generating circle and the other is called by Apollonius the subcontrary sections. 
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Figure 6. Side view of a cone with the two directions of circular sections. 

 
Figure 7. The same cone with two directions of circular sections. 

[Applet: CircSecs2.html]  
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Figure 8. Triangles ABC and ADB are similar. 

If one looks at the triangles formed by the diameters of the circular sections (both 
families) and the vertex of the cone, they are all similar.  That is, if the triangles 

� 

ABC  
and 

� 

ADB  in Figure 8 are similar, then all sections of the cone parallel to either one of 
these circles will be circles.  This is Book 1, Proposition 5 in Apollonius.  This is not an 
isolated oddity.  Quite the contrary, it is the beginning of whole series of duality 
propositions about conics which are fundamental in many later approaches to curves 
and functions.  As is often the case, similarity is at the heart of the issue. 
Try this (1).   What happens in Figure 8 if the cone is a right cone? 
Tangent planes to a cone 

Intuitively, a tangent plane to a surface just touches it at one point, and at that 
point, the surface and the plane have the same directions. (Here ”directions” refer to 
tangent vectors.) Farther away, the surface may curve away, but the tangent plane is 
still straight. 

Any tangent plane to a cone touches the cone at an entire line that goes through 
the vertex.  

If a different plane cuts the cone at a point with a tangent plane, then the other 
plane intersects the cone in a curve, and it cuts the tangent plane at a line that is tangent 
to the curve. 
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Figure 9. A tangent plane to a cone, showing the line through the vertex and the tangent 

line to a circle, and two tangent vectors. 
[Applet TangentPlane.html] 

 
C. Apollonius’s classification of parabolas as conic sections 

Apollonius proved that when any cone is sliced by a plane which is parallel to 
one of its tangent planes (but not containing a generating line), then the resulting 
section is a parabola, in the sense that we know it as a curve: one of its coordinates is 
proportional to the square of the other.  This argument is taken from Apollonius (Book 
1, Proposition 11), but was known much earlier.  This argument does not depend on the 
cone being a right cone.  All that is needed is some set of parallel circular sections. 
The proof in the parabola case 
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Figure 10. A cone cut by a plane, forming a parabola. Two other planes needed in the 

proof are also shown.  
[Applet: ConeParabola.html] 
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Figure 11. The same cone, points labeled, some planes transparent, for the proof. 
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Figure 12. Lines, circles, and the parabola on the cone in Figure 11, for the proof. 

 
In Figure 12 let the curve 

� 

KALbe formed from slicing the cone with a plane 
parallel to the line 

� 

EG .  Let 

� 

GKH  be a circular section and let 

� 

D, 

� 

C , and 

� 

E  lie on any 
parallel circular section (with 

� 

C  on the curve).  Now 

� 

LF  is the geometric mean of 

� 

HF  
and 

� 

FG , i.e. 

� 

LF2
= FH × FG .  Likewise 

� 

BC  is the geometric mean of 

� 

DB  and 

� 

BE , i.e. 

� 

BC2
= BD × BE  (this is a fundamental property of the diameter of a circle and any chord 

perpendicular to it).  Since the parabolic section is parallel to 

� 

EG , 

� 

BE = FG .  Since 
triangles 

� 

ABD  and 

� 

AFH  are similar to each other, we have the proportion 

� 

BD:BA = FH :FA .  If we think of sliding the parallel circular sections, and watching the 
two segments on the diameter, one of them is fixed (

� 

BG = FE ), and the other (

� 

BD  or 

� 

FH ) is proportional to the distance along the axis of the curve (

� 

BA  or 

� 

FA ).  Hence the 
distance along the axis of the parabola (

� 

BA  or 

� 

FA ) is proportional to the square on the 
lateral distance out to the curve (

� 

BC  or 

� 

FL) by the geometric mean property of circles.   
Introducing variables, we could let 

� 

AB = x  and 

� 

BC = y , and then say that there 
exists some constant of proportionality, 

� 

p , such that 

� 

(p ⋅ x) ⋅(BE ) = y2 .  The constant, 

� 

p , 
is the proportionality constant from the similar triangles just mentioned (i.e. 

� 

p =DB:AB ).  It projects from the plane of the parabola (where 

� 

x  is measured) to the 
planes of the circular sections. 

Of course Apollonius did not write an equation.  Instead he showed how to 
construct a single line segment (called the latus rectum), and stated that the rectangle 
formed by this segment and 

� 

AB  is always equal to the square on 

� 

BC .  This latus rectum 
(whose length equals 

� 

p ⋅BE ) works for any parallel circular section along this parabola.  
The latus rectum is an actual line segment in his construction.   

The view taken in this construction is that a parabola is generated by a changing 
set of geometric means where one of the segments is constant (in Figure 12 it is 

� 

BE = FG  that is constant).  In the cone, the circles which create these geometric means 
are not in the plane of the parabola, but the proportionality still holds there because of 
the similar triangles (i.e. 

� 

ΔABD ≈ ΔAFG ).   
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Outline of the proof for ellipses and hyperbolas 
This view can be extended to the elliptic and hyperbolic cases by considering a 

linear proportional change in 

� 

BE  as we move down the cone. 

� 

BE  decreases in the 
elliptic case and increases in the hyperbolic case (see Figure 12).  In the elliptic case the 
equation coming from the geometric means on the series of circular sections would be: 

� 

y 2 = p ⋅ x( ) ⋅ ′ p ⋅ k − x( )( ) ; where 

� 

y , 

� 

x , and 

� 

p  are as before; 

� 

k  is the entire finite length of 
the axis along which 

� 

x  is measured; and 

� 

′ p is a constant of proportionality that projects 

� 

k - x  onto the circular sections in the plane containing 

� 

AHF  (

� 

p = ′ p  only in the case 
where the ellipse is formed as a section of a cylinder).  This equation comes from the 
cone in the same way as before except that 

� 

BE is replaced by 

� 

′ p ⋅(k - x) . This equation 
can be rewritten as: 

� 

y 2

p ⋅ ′ p ⋅
k
2
⎛ 
⎝ 

⎞ 
⎠ 

2 +
x −

k
2

⎛ 
⎝ 

⎞ 
⎠ 

2

k
2

⎛ 
⎝ 

⎞ 
⎠ 

2 = 1, 

which is the standard form given in modern textbooks, but with a translation 
because 

� 

x  is measured from a vertex at one end of the axis instead of from the 
center.  For the hyperbola, simply replace 

� 

 ′ p ⋅(k - x)  with 

� 

 ′ p ⋅(k + x)  to indicate 
the increasing lengths of 

� 

BE . 

� 

k  in this case is the distance between the vertex on 
the hyperbola and the vertex of the opposite branch.  Again it should be noted 
that Apollonius did not write equations, but made these statements in ratio form 
with geometrically constructed adjustments to the latus recta.  One should also 
note that Apollonius gave the converse of these arguments, i.e. that any curve 
with these geometric mean properties (equations) must be a conic section, 
because the geometric means can always be constructed from a series of circles 
whose radii are changing arithmetically (hence a cone). 

D. Arabic constructions of conic sections 
A tenth century Arabic mathematician, Ibn Sina, wrote several commentaries on 

Apollonius in which he showed how to draw conics using ruler and compass.  He 
simply flattened the picture, and put the series of circles in the same plane as the curve.  
His method was still the same.  He built, for example, a parabola using a series of 
geometric means where one of the segments is held constant.   Looking at Figure 13, one 
sees a series of tangent circles all passing through the point 

� 

S .  A fixed vertical line at 

� 

A  
constructs the geometric means between 

� 

SA (constant) and a series of segments 

� 

AT , 

� 

AU , 

� 

AV .  These segments are then plotted against the series of geometric means 

� 

AX , 

� 

AY , 

� 

AZ , to give a set of points

� 

A , 

� 

B, 

� 

C , 

� 

D, all of which lie along a parabola.  In this 
picture the horizontal distances of the points (

� 

B, 

� 

C , and 

� 

D) from 

� 

A  is proportional to 
the square on their vertical distances.  The latus rectum is

� 

SA. 
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Figure 13. Ibn Sina’s parabola construction 

[Applet: IbnSinaParabola.html]  
 This and other Arabic methods of drawing conics were static in the sense 

that they allowed one to plot as many points on the curves as desired, but they did not 
draw the curve in a continuous way.  This particular construction of Ibn Sina, however, 
can be easily adapted as a design for a dynamic mechanism which will draw parabolas 
in a smooth continuous manner.  Imagine a nail driven in at 

� 

S , and a carpenter's square 
with the vertex of its right angle riding on the line 

� 

AX and one arm resting against 

� 

S .  
As we move the vertex 

� 

X  along the vertical line the other arm of the square will be 
intersecting the line 

� 

SA at points 

� 

T  such that 

� 

AX  is always the geometric mean of 

� 

SA 
and 

� 

AT .  Using a second carpenter's square 

� 

XBT  we can continuously locate the points 
on the parabola. Figure 14 shows two positions of an animation of such a device.  The 
point 

� 

X  is being moved along the vertical line to drive the animation while the locus of 
the point 

� 

B draws the parabola. 
 

              
  

Figure 14. A modern dynamic adaptation if Ibn Sina's method. 
[Applet: 2RtTriParabola.html] 
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This dynamic adaptation of Ibn Sina's construction was not taken from any 
historical source.  It is similar in nature, however, to many of the devices from the 
seventeenth century described in the next section.  These examples allow the reader to 
see a transition from classical geometry to a dynamic situation where actions generate 
curves.  An analysis of such actions provides important groundwork for understanding 
the evolution of modern notions of analytic geometry and functions. 

Arabic interest in drawing conic sections was spurred by their development of 
methods for solving cubic equations by intersecting two conic sections (e.g. by 
intersecting a parabola with a hyperbola).  In the work of Omar Khayyam, a general 
geometric method for the solution of cubics is given. These methods had a profound 
impact on later Western mathematics. For example, one of the primary goals of 
Descartes' Geometry was to extend these Arabic methods by finding new ways to draw 
curves whose intersections would yield solutions to equations of arbitrary degree. One 
should keep in mind that equations to be solved were frequently stated first as 
geometry problems (e.g. doubling a cube, trisecting an angle, or finding the parameters 
of curves that meets certain tangent requirements).  This was true for both  Arabic and 
European mathematicians up to 1650.  

The new views that transformed European mathematics in the seventeenth 
century were not just a move from geometry to algebra, but perhaps more importantly 
a move from a static to a dynamic geometry that involved time and motion.    

 
E. Conjugate diameters and equations for conics 

In the opening definitions of The Conics  the following definition appears: 
4.  Of any curved line which is in one plane I call that straight line the diameter 
which, drawn from the curved line, bisects all straight lines drawn to this curved 
line parallel to some straight line; and I call the end of that straight line (the 
diameter) situated on the curved line the vertex of the curved line, and I say that 
each of these parallels is drawn ordinatewise to the diameter 
Mathematicians in the 1600s, before the concept of a coordinate system emerged, 

used the terms abscissa and ordinate as proto-coordinates for a curve. Given a curve C 
and axes (lines) L and M intersecting at O, each point P on the curve determines two 
line segments: PQ, along a parallel to M, and OQ, along L. Points Pi  along C, in order, 
give an ordered sequence of segments PiQi  (the ordinates), and corresponding segments 
OQi  cut off along L. (The word abscissa means literally “cut off” in Latin.)   

             
Figure 15. Axes L and M, abscissas OQ, ordinates QP. 
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It turns out that, in the case of circles, ellipses, and hyperbolas, the diameters are 

exactly the lines that pass through the center.  In the case of the circle, the ordinates are 
always perpendicular to the diameter, but in the case of other conics this is not always 
so (see).  The ordinatewise direction is the set of chords which are all parallel to the 
tangent line at the vertex of the diameter.  It was surprising to me, at first, that such a 
family of bisected chords existed except along an axis of symmetry.  This is never 
mentioned in modern discussions of conic sections, except in certain projective 
treatments.  Apollonius defines an "axis" as a special case of a diameter where the 
family of bisected chords are perpendicular to the diameter. 

 
Figure 16. 

[Applet: EllConjDiam.html] 
Figure 16 shows an ellipse with center 

� 

C .  Choosing an arbitrary point 

� 

P  on the 
ellipse, 

� 

PC  is a diameter according to the Definition 4, because all of the chords parallel 
to the tangent at 

� 

P  will be bisected by 

� 

PC . Another property of conics demonstrated in 
Apollonius is that the chord 

� 

Q ′ Q  which passes through the center 

� 

C  has as its ordinates 
(i.e. bisected chords) all chords parallel to 

� 

PC .  Hence the tangent at 

� 

Q  is also parallel to 

� 

PC .  Apollonius called 

� 

Q ′ Q  the conjugate diameter to 

� 

P ′ P .  This is an example of a 
fundamental duality property of all conics.  

 
Figure 17. 

http://www.quadrivium.info
http://www.quadrivium.info/GGB/EllConjDiam.html


 Mathematical Intentions, page 15 

Copyright 2009 David Dennis and Susan Addington. All rights reserved. 
http://www.quadrivium.info 

Let us look next at these bisected chords and conjugate diameters on the 
hyperbola (see Figure 17).  It remains true that any line through the center, 

� 

C , will 
bisect all chords (e.g. 

� 

Q ′ Q ) parallel to the tangent at the vertex 

� 

P .  There is a line 
through center that is parallel to the ordinates with respect to 

� 

PC , but which does not 
intersect the curve.  It is still, however, a conjugate diameter in the sense that any chord 
parallel to 

� 

PC  will be bisected by this line through 

� 

C .  Such chords (e.g. 

� 

P ′ P ) go 
between the two opposite branches of the hyperbola instead of being contained within 
one branch.  Although this "conjugate diameter" does not intersect the curve, 
Apollonius gives a finite length centered at 

� 

C  so that it has the same ratio properties as 
in the elliptic case.  This is a generalized version of what is usually done in classrooms 
when a specific rectangle is constructed in the middle of a hyperbola having the 
asymptotes as its diagonals. 

 
Figure 18. 

[Applet: ParabConjDiam.html] 
Turning to the parabola adds more justification to Apollonius' definition of a 

diameter.  A parabola has no center (it is at infinity) but it does have many diameters.  
Without projective methods, these diameters cannot be defined as lines through the 
center.  They turn out to be all lines which are parallel to the axis of symmetry (see 
Figure 18).  In this case none of the diameters intersect each other (unless one includes 
the point at infinity), so there are no pairs of conjugate diameters, but any vertical line 
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in Figure 18 (e.g. 

� 

PC ) will bisect all chords parallel to the tangent at its vertex 

� 

P  
(e.g.

� 

AQ = A ′ Q , 

� 

BR = B ′ R , and 

� 

CS =C ′ S ).    
Apollonius demonstrated ratio properties for each conic section, that, if 

translated into algebra, and applied to the axes (in the Apollonian sense), would yield 
our modern standard equations.  He demonstrated, however, that these ratio properties 
are true for any of his diameters.  In modern algebra this implies that the form of the 
equations of conic sections remains unchanged if we coordinatize the curve along 
different diameters, provided we always use the ordinate direction appropriate to the 
diameter (i.e. a non-perpendicular coordinate system using the direction of the bisected 
chords).  Only the constants (e.g. the latus rectum in the parabolic case) will have to be 
adjusted.  When we use our standard equations of conics (coordinatized 
perpendicularly along the axes of symmetry), we can choose either the positive or 
negative square root to find pairs of symmetrical points.  This Apollonian bisection 
property shows that this can also be done using any diameter, even if it is not an axis of 
symmetry.     

 For example, in Figure 18, if we use the diameter at

� 

P , then for any point 

� 

C , we will have that 

� 

CS2 (

� 

= C ′ S 2 ) will be proportional to

� 

PC .  The right triangle 

� 

CSD  
will give us the appropriate new proportionality constant, relative to the axis the of 
symmetry, by taking the ratio of the squares of 

� 

CS  to

� 

DS .  For example let us assume 
that the parabola in Figure 18 has the equation 

� 

1 ⋅ y = x 2 with respect to the (axial) 
perpendicular coordinates with the origin at the vertex.  Suppose we then construct the 
diameter (vertical line) through the point 

� 

P = (1,1)  and use parallel chords all having a 
slope of 

� 

+2  as our ordinates.  Supposing that 

� 

P = (1,1)  in Figure 18, that is to say, let the 
coordinates of the point 

� 

Q  on the parabola, be given in the new system as 

� 

′ x = AQ  and 

� 

′ y = PA ; or of the point

� 

S , as

� 

′ x = CS , and

� 

′ y = PC .  The equation of the parabola in these 
coordinates will be 

� 

5 ⋅ ′ y = ′ x 2, because the ratio 

� 

CS2:DS2 = 5:1  (coming from a right 
triangle with legs in a 

� 

2:1 ratio).  For example, the points 

� 

2,4( )  in the axis system 
becomes 5,1( )  with respect to the diameter through P.  The point − 5,1( )   is on the 
curve at the other end of the bisected chord.  Putting the constant (i.e. 5) with 

� 

y  
preserves the dimensional integrity of the statement (i.e. it says that a rectangle equals a 
square).  Apollonius would say that the latus rectum with respect to the new diameter 
is five times the latus rectum with respect to the axis.  Such a statement avoids choosing 
a unit.   

 To demonstrate the statements in the previous paragraph, look back at 
Figure 12.  If the cone is oblique such that the plane containing 

� 

A , 

� 

H , and 

� 

G  is not 
perpendicular to the plane of the base circle 

� 

KHLG , then 

� 

AF  will not be the axis of the 
parabola but it will still be a diameter (Apollonius, Book 1, Prop. 7). 

� 

BCand 

� 

FL  will still 
be ordinates with respect to 

� 

AF , but they will not be perpendicular to 

� 

AF  (they will 
still appear as in Figure 18).  The previous discussion of Figure 12 remains valid since it 
depended only on having a series of parallel circular sections which produce a series a 
geometric means. 

� 

AB  is still proportional to 

� 

BC2 .  The form of the equations remains 
the same.  The same is true for ellipses and hyperbolas.  Ratio and similarity are more 
flexible and general than they often appear in our usual curriculum.     
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F. Exercises 
Try this (1).   Prove all the results in section B, in Euclidean style. What 

axioms/postulates should you use? 
For the next problems, use modern coordinate geometry. 

Try this (2).   Let C be a curve in the plane z=1 defined by a polynomial (in x and y.) For 
example, the curve defined by the equations x2 + y2 = 1 and z = 1  is a unit circle in 
the plane z=1, and it is defined by a polynomial of degree 2. Multiply each term by a 
power of z so that each term has degree 2. (It may be the 0th power. This is called 
homogenizing the curve. It produces a homogeneous equation, in which all terms 
have the same degree.) In the circle example, you get x2 + y2 = z2 . A cone on any 
plane curve is defined to be the set of points on all lines connecting points on the 
curve with a vertex not in the plane. Explain why the homogenized equation for C is 
the cone on C with vertex (0,0,0). 

Try this (3).   Find an equation for an oblique cone on a circle in which the vertex is 
directly above (or below) a point on the circle. 

Try this (4).   (Requires a serious course in linear algebra, including eigenvalues and 
diagonalization of quadratic forms.) Use the cone in [Try this (3).  Prove that it is a 
right cone on an ellipse, and give the ellipse and its plane explicitly. (Once you have 
set up the problem, a computer algebra system, such as Maple or Mathematica, is 
highly recommended. The calculations are pretty horrendous.) 
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